Algebraic structures | Semigroup theory

Semigroup with three elements

In abstract algebra, a semigroup with three elements is an object consisting of three elements and an associative operation defined on them. The basic example would be the three integers 0, 1, and −1, together with the operation of multiplication. Multiplication of integers is associative, and the product of any two of these three integers is again one of these three integers. There are 18 inequivalent ways to define an associative operation on three elements: while there are, altogether, a total of 39 = 19683 different binary operations that can be defined, only 113 of these are associative, and many of these are isomorphic or antiisomorphic so that there are essentially only 18 possibilities. One of these is C3, the cyclic group with three elements. The others all have a semigroup with two elements as subsemigroups. In the example above, the set {−1,0,1} under multiplication contains both {0,1} and {−1,1} as subsemigroups (the latter is a subgroup, C2). Six of these are bands, meaning that all three elements are idempotent, so that the product of any element with itself is itself again. Two of these bands are commutative, therefore semilattices (one of them is the three-element totally ordered set, and the other is a three-element semilattice that is not a lattice). The other four come in anti-isomorphic pairs. One of these non-commutative bands results from adjoining an identity element to LO2, the left zero semigroup with two elements (or, dually, to RO2, the right zero semigroup). It is sometimes called the flip-flop monoid, referring to flip-flop circuits used in electronics: the three elements can be described as "set", "reset", and "do nothing". This semigroup occurs in the Krohn–Rhodes decomposition of finite semigroups. The irreducible elements in this decomposition are the finite simple groups plus this three-element semigroup, and its subsemigroups. There are two cyclic semigroups, one described by the equation x4 = x3, which has O2, the null semigroup with two elements, as a subsemigroup. The other is described by x4 = x2 and has C2, the group with two elements, as a subgroup. (The equation x4 = x describes C3, the group with three elements, already mentioned.) There are seven other non-cyclic non-band commutative semigroups, including the initial example of {−1, 0, 1}, and O3, the null semigroup with three elements. There are also two other anti-isomorphic pairs of non-commutative non-band semigroups. (Wikipedia).

Video thumbnail

Group theory 7: Semidirect products

This is lecture 7 of an online course on group theory. It covers semidirect products and uses them to classify groups of order 6.

From playlist Group theory

Video thumbnail

Inner & Outer Semidirect Products Derivation - Group Theory

Semidirect products are a very important tool for studying groups because they allow us to break a group into smaller components using normal subgroups and complements! Here we describe a derivation for the idea of semidirect products and an explanation of how the map into the automorphism

From playlist Group Theory

Video thumbnail

Groups in abstract algebra examples

In this tutorial I discuss two more examples of groups. The first contains four elements and they are the four fourth roots of 1. The second contains only three elements and they are the three cube roots of 1. Under the binary operation of multiplication, these sets are in fact groups.

From playlist Abstract algebra

Video thumbnail

The Klein Four-Group

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys The Klein Four-Group is the smallest noncyclic abelian group. Every proper subgroup is cyclic. We look at the the multiplication in the Klein Four-Group and find all of it's subgroups.

From playlist Abstract Algebra

Video thumbnail

Definition of a group Lesson 24

In this video we take our first look at the definition of a group. It is basically a set of elements and the operation defined on them. If this set of elements and the operation defined on them obey the properties of closure and associativity, and if one of the elements is the identity el

From playlist Abstract algebra

Video thumbnail

Walter van Suijlekom: Semigroup of inner perturbations in Non Commutative Geometry

Starting with an algebra, we define a semigroup which extends the group of invertible elements in that algebra. As we will explain, this semigroup describes inner perturbations of noncommutative manifolds, and has applications to gauge theories in physics. We will present some elementary e

From playlist HIM Lectures: Trimester Program "Non-commutative Geometry and its Applications"

Video thumbnail

AlgTopReview4: Free abelian groups and non-commutative groups

Free abelian groups play an important role in algebraic topology. These are groups modelled on the additive group of integers Z, and their theory is analogous to the theory of vector spaces. We state the Fundamental Theorem of Finitely Generated Commutative Groups, which says that any such

From playlist Algebraic Topology

Video thumbnail

GT2. Definition of Subgroup

Abstract Algebra: We define the notion of a subgroup and provide various examples. We also consider cyclic subgroups and subgroups generated by subsets in a given group G. Example include A4 and D8. U.Reddit course materials available at http://ureddit.com/class/23794/intro-to-group-

From playlist Abstract Algebra

Video thumbnail

"New Paradigms in Invariant Theory" - Roger Howe, Yale University [2011]

HKUST Institute for Advanced Study Distinguished Lecture New Paradigms in Invariant Theory Speaker: Prof Roger Howe, Yale University Date: 13/6/2011 Video taken from: http://video.ust.hk/Watch.aspx?Video=6A41D5F6B1A790DC

From playlist Mathematics

Video thumbnail

GT1. Definition of Group

Abstract Algebra: We introduce the notion of a group and describe basic properties. Examples given include familiar abelian groups and the symmetric groups. U.Reddit course materials available at http://ureddit.com/class/23794/intro-to-group-theory Master list at http://mathdoctorbob.o

From playlist Abstract Algebra

Video thumbnail

BAG1.4. Toric Varieties 4 - Spec(R) and Affine Semigroups

Basic Algebraic Geometry: In this part, we introduce Spec(R) and affine semigroups. This allows us to give yet another characterization of affine toric varieties in terms of affine semigroups.

From playlist Basic Algebraic Geometry

Video thumbnail

The potential of AI, illustrated in the classification of finite..(Lecture 5) by Carlos Simpson

INFOSYS-ICTS RAMANUJAN LECTURES EXPLORING MODULI SPEAKER: Carlos Simpson (Université Nice-Sophia Antipolis, France) DATE: 10 February 2020 to 14 February 2020 VENUE: Madhava Lecture Hall, ICTS Campus Lecture 1: Exploring Moduli: basic constructions and examples 4 PM, 10 February 2020

From playlist Infosys-ICTS Ramanujan Lectures

Video thumbnail

Type Classes for Mathematical Formalizations in Coq - Matthieu Sozeau

Matthieu Sozeau INRIA Paris; Member, School of Mathematics October 3, 2012 For more videos, visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Zero dimensional valuations on equicharacteristic (...) - B. Teissier - Workshop 2 - CEB T1 2018

Bernard Teissier (IMJ-PRG) / 06.03.2018 Zero dimensional valuations on equicharacteristic noetherian local domains. A study of those valuations based, in the case where the domain is complete, on the relations between the elements of a minimal system of generators of the value semigroup o

From playlist 2018 - T1 - Model Theory, Combinatorics and Valued fields

Video thumbnail

Markus Haase : Operators in ergodic theory - Lecture 3 : Compact semigroups and splitting theorems

Abstract : The titles of the of the individual lectures are: 1. Operators dynamics versus base space dynamics 2. Dilations and joinings 3. Compact semigroups and splitting theorems Recording during the thematic meeting : "Probabilistic Aspects of Multiple Ergodic Averages " the December 8

From playlist Dynamical Systems and Ordinary Differential Equations

Video thumbnail

Workshop 1 "Operator Algebras and Quantum Information Theory" - CEB T3 2017 - A.Gheondea

Aurelian Gheondea (Bilkent University, Ankara) / 11.09.17 Title: Symmetry versus Conservation Laws in Dynamical Quantum Systems: A Unifying Approach through Propagation of Fixed Points Abstract: We unify recent Noether type theorems on the equivalence of symmetries with conservation laws

From playlist 2017 - T3 - Analysis in Quantum Information Theory - CEB Trimester

Video thumbnail

On the structure of quantum Markov semigroups - F. Fagnola - PRACQSYS 2018 - CEB T2 2018

Franco Fagnola (Department of Mathematics, Politecnico di Milano, Italy) / 06.07.2018 On the structure of quantum Markov semigroups We discuss the relationships between the decoherence-free subalgebra and the structure of the fixed point subalgebra of a quantum Markov semigroup on B(h) w

From playlist 2018 - T2 - Measurement and Control of Quantum Systems: Theory and Experiments

Video thumbnail

From Magmas to Fields: a trippy excursion through algebra - SoME2 3b1b

A gentle introduction to the most basic definitions in Algebra (and how to make them stick forever). If you always struggled to remember what a field is this video is for you. You will learn about: 0:00 This videos aim 1:20 Sets 1:52 Magmas 3:15 Semigroups 4:39 Monoids 5:22 Groups 6:04 Co

From playlist Summer of Math Exposition 2 videos

Video thumbnail

Counting and dynamics in SL2 - Michael Magee

Michael Magee Member, School of Mathematics April 6, 2015 In this talk I'll discuss a lattice point count for a thin semigroup inside SL2(ℤ)SL2(Z). It is important for applications I'll describe that one can perform this count uniformly throughout congruence classes. The approach to count

From playlist Mathematics

Video thumbnail

GT14. Semidirect Products

EDIT: At 6:24, the product should be "(e sub H, e sub N)", not "(e sub H, e sub G)" Abstract Algebra: Using automorphisms, we define the semidirect product of two groups. We prove the group property and construct various examples, including the dihedral groups. As an application, we

From playlist Abstract Algebra

Related pages

Flip-flop (electronics) | Semigroup with two elements | Total order | Monogenic semigroup | Null semigroup | Abstract algebra | Special classes of semigroups | Semilattice | Antiisomorphism | Krohn–Rhodes theory | Aperiodic semigroup | Semigroup | Cyclic group | Empty semigroup | Monoid | Identity element