Algebraic structures | Semigroup theory

Semigroup

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: x·y, or simply xy, denotes the result of applying the semigroup operation to the ordered pair (x, y). Associativity is formally expressed as that (x·y)·z = x·(y·z) for all x, y and z in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. As in the case of groups or magmas, the semigroup operation need not be commutative, so x·y is not necessarily equal to y·x; a well-known example of an operation that is associative but non-commutative is matrix multiplication. If the semigroup operation is commutative, then the semigroup is called a commutative semigroup or (less often than in the analogous case of groups) it may be called an abelian semigroup. A monoid is an algebraic structure intermediate between semigroups and groups, and is a semigroup having an identity element, thus obeying all but one of the axioms of a group: existence of inverses is not required of a monoid. A natural example is strings with concatenation as the binary operation, and the empty string as the identity element. Restricting to non-empty strings gives an example of a semigroup that is not a monoid. Positive integers with addition form a commutative semigroup that is not a monoid, whereas the non-negative integers do form a monoid. A semigroup without an identity element can be easily turned into a monoid by just adding an identity element. Consequently, monoids are studied in the theory of semigroups rather than in group theory. Semigroups should not be confused with quasigroups, which are a generalization of groups in a different direction; the operation in a quasigroup need not be associative but quasigroups preserve from groups a notion of division. Division in semigroups (or in monoids) is not possible in general. The formal study of semigroups began in the early 20th century. Early results include a Cayley theorem for semigroups realizing any semigroup as transformation semigroup, in which arbitrary functions replace the role of bijections from group theory. A deep result in the classification of finite semigroups is Krohn–Rhodes theory, analogous to the Jordan–Hölder decomposition for finite groups. Some other techniques for studying semigroups, like Green's relations, do not resemble anything in group theory. The theory of finite semigroups has been of particular importance in theoretical computer science since the 1950s because of the natural link between finite semigroups and finite automata via the syntactic monoid. In probability theory, semigroups are associated with Markov processes. In other areas of applied mathematics, semigroups are fundamental models for linear time-invariant systems. In partial differential equations, a semigroup is associated to any equation whose spatial evolution is independent of time. There are numerous special classes of semigroups, semigroups with additional properties, which appear in particular applications. Some of these classes are even closer to groups by exhibiting some additional but not all properties of a group. Of these we mention: regular semigroups, orthodox semigroups, semigroups with involution, inverse semigroups and cancellative semigroups. There are also interesting classes of semigroups that do not contain any groups except the trivial group; examples of the latter kind are bands and their commutative subclass—semilattices, which are also ordered algebraic structures. (Wikipedia).

Semigroup
Video thumbnail

Inner & Outer Semidirect Products Derivation - Group Theory

Semidirect products are a very important tool for studying groups because they allow us to break a group into smaller components using normal subgroups and complements! Here we describe a derivation for the idea of semidirect products and an explanation of how the map into the automorphism

From playlist Group Theory

Video thumbnail

Walter van Suijlekom: Semigroup of inner perturbations in Non Commutative Geometry

Starting with an algebra, we define a semigroup which extends the group of invertible elements in that algebra. As we will explain, this semigroup describes inner perturbations of noncommutative manifolds, and has applications to gauge theories in physics. We will present some elementary e

From playlist HIM Lectures: Trimester Program "Non-commutative Geometry and its Applications"

Video thumbnail

Group theory 7: Semidirect products

This is lecture 7 of an online course on group theory. It covers semidirect products and uses them to classify groups of order 6.

From playlist Group theory

Video thumbnail

SHM - 16/12/2016 - The algebraic theory of semigroups (...) - Christopher HOLLINGS

Mathématiques aux États-Unis dans la première moitié du XXe siècle et leurs relations avec l'Europe (séance préparée par Simon Decaens) Christopher Hollings (Oxford University) : "The algebraic theory of semigroups: interactions between US and European mathematics during the 20th century"

From playlist Séminaire d'Histoire des Mathématiques

Video thumbnail

301.2 Definition of a Group

A group is (in a sense) the simplest structure in which we can do the familiar tasks associated with "algebra." First, in this video, we review the definition of a group.

From playlist Modern Algebra - Chapter 15 (groups)

Video thumbnail

Joachim Cuntz: Semigroup C*-algebras and toric varieties

The lecture was held within the framework of the Hausdorff Trimester Program: K-Theory and Related Fields. The coordinate ring of a toric variety is the semigroup ring of a finitely generated subsemigroup of Zn. Such semigroups have the interesting feature that their family of constructib

From playlist HIM Lectures: Trimester Program "K-Theory and Related Fields"

Video thumbnail

GT2. Definition of Subgroup

Abstract Algebra: We define the notion of a subgroup and provide various examples. We also consider cyclic subgroups and subgroups generated by subsets in a given group G. Example include A4 and D8. U.Reddit course materials available at http://ureddit.com/class/23794/intro-to-group-

From playlist Abstract Algebra

Video thumbnail

Definition of a group Lesson 24

In this video we take our first look at the definition of a group. It is basically a set of elements and the operation defined on them. If this set of elements and the operation defined on them obey the properties of closure and associativity, and if one of the elements is the identity el

From playlist Abstract algebra

Video thumbnail

(ML 19.5) Positive semidefinite kernels (Covariance functions)

Definition of a positive semidefinite kernel, or covariance function. A simple example. Explanation of terminology: autocovariance, positive definite kernel, stationary kernel, isotropic kernel, covariogram, positive definite function.

From playlist Machine Learning

Video thumbnail

Concentration of quantum states from quantum functional (...) - N. Datta - Workshop 2 - CEB T3 2017

Nilanjana Datta / 24.10.17 Concentration of quantum states from quantum functional and transportation cost inequalities Quantum functional inequalities (e.g. the logarithmic Sobolev- and Poincaré inequalities) have found widespread application in the study of the behavior of primitive q

From playlist 2017 - T3 - Analysis in Quantum Information Theory - CEB Trimester

Video thumbnail

On the structure of quantum Markov semigroups - F. Fagnola - PRACQSYS 2018 - CEB T2 2018

Franco Fagnola (Department of Mathematics, Politecnico di Milano, Italy) / 06.07.2018 On the structure of quantum Markov semigroups We discuss the relationships between the decoherence-free subalgebra and the structure of the fixed point subalgebra of a quantum Markov semigroup on B(h) w

From playlist 2018 - T2 - Measurement and Control of Quantum Systems: Theory and Experiments

Video thumbnail

BAG1.4. Toric Varieties 4 - Spec(R) and Affine Semigroups

Basic Algebraic Geometry: In this part, we introduce Spec(R) and affine semigroups. This allows us to give yet another characterization of affine toric varieties in terms of affine semigroups.

From playlist Basic Algebraic Geometry

Video thumbnail

"New Paradigms in Invariant Theory" - Roger Howe, Yale University [2011]

HKUST Institute for Advanced Study Distinguished Lecture New Paradigms in Invariant Theory Speaker: Prof Roger Howe, Yale University Date: 13/6/2011 Video taken from: http://video.ust.hk/Watch.aspx?Video=6A41D5F6B1A790DC

From playlist Mathematics

Video thumbnail

Type Classes for Mathematical Formalizations in Coq - Matthieu Sozeau

Matthieu Sozeau INRIA Paris; Member, School of Mathematics October 3, 2012 For more videos, visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Markus Haase : Operators in ergodic theory - Lecture 3 : Compact semigroups and splitting theorems

Abstract : The titles of the of the individual lectures are: 1. Operators dynamics versus base space dynamics 2. Dilations and joinings 3. Compact semigroups and splitting theorems Recording during the thematic meeting : "Probabilistic Aspects of Multiple Ergodic Averages " the December 8

From playlist Dynamical Systems and Ordinary Differential Equations

Video thumbnail

Semigroups and Abelian Algebraic Structures

Thesis: https://www.researchgate.net/publication/328163392_The_Cayley_type_theorem_for_semigroups Merch :v - https://teespring.com/de/stores/papaflammy Help me create more free content! =) https://www.patreon.com/mathable Paper's Playlist: https://www.youtube.com/watch?v=nvYqkhZFzyY&lis

From playlist Bachelor's Paper

Video thumbnail

Charles Batty: Rates of decay associated with operator semigroups

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Dynamical Systems and Ordinary Differential Equations

Video thumbnail

The potential of AI, illustrated in the classification of finite..(Lecture 5) by Carlos Simpson

INFOSYS-ICTS RAMANUJAN LECTURES EXPLORING MODULI SPEAKER: Carlos Simpson (Université Nice-Sophia Antipolis, France) DATE: 10 February 2020 to 14 February 2020 VENUE: Madhava Lecture Hall, ICTS Campus Lecture 1: Exploring Moduli: basic constructions and examples 4 PM, 10 February 2020

From playlist Infosys-ICTS Ramanujan Lectures

Video thumbnail

Zero dimensional valuations on equicharacteristic (...) - B. Teissier - Workshop 2 - CEB T1 2018

Bernard Teissier (IMJ-PRG) / 06.03.2018 Zero dimensional valuations on equicharacteristic noetherian local domains. A study of those valuations based, in the case where the domain is complete, on the relations between the elements of a minimal system of generators of the value semigroup o

From playlist 2018 - T1 - Model Theory, Combinatorics and Valued fields

Video thumbnail

Definition of the Symmetric Group

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Definition of the Symmetric Group

From playlist Abstract Algebra

Related pages

Idempotence | Rees factor semigroup | Cancellative semigroup | Partially ordered set | N-ary group | Empty semigroup | Identity element | Maximal subgroup | Arity | Representation theory | Multiplication | Equivalence class | Associative property | Special classes of semigroups | Ordinary differential equation | Free monoid | Inverse semigroup | Quotient | Semigroup with involution | Bicyclic semigroup | Subgroup | Anatoly Maltsev | Light's associativity test | Matrix multiplication | Lp space | Arrangement of hyperplanes | Weak inverse | Binary operation | Presentation of a group | Abelian group | Exponentiation | Semilattice | Ideal (ring theory) | Transformation semigroup | Domain of a function | Absorbing element | Krohn–Rhodes theory | Ascending chain condition | Integer | Center (algebra) | Concatenation | Embedding | Category (mathematics) | Product of group subsets | Semigroup with two elements | Equivalence relation | Group homomorphism | Interval (mathematics) | Probability theory | Green's relations | Grothendieck group | String (computer science) | Finite-state machine | Functional analysis | Convolution power | Quasigroup | Theoretical computer science | Kernel (set theory) | Sobolev space | Applied mathematics | Generalized inverse | Identity function | Semigroup Forum | Homomorphism | Set (mathematics) | Function (mathematics) | C0-semigroup | Heat equation | Complete lattice | Function composition | Inverse element | Magma (algebra) | Nonnegative matrix | Endomorphism | Principal ideal | Monoid | Composition of relations | Cancellation property | Topological space | Algebraic structure | Biordered set | Continuous function | Up to | Zorn's lemma | Group (mathematics) | Isomorphism | Commutative algebra | Linear time-invariant system | Monogenic semigroup | Trivial group | Semigroupoid | Isomorphism theorems | Syntactic monoid | Band (algebra) | Empty set | Division (mathematics) | Binary relation | Semigroup with three elements | Regular semigroup | Probability distribution | Subset | Orthodox semigroup | Ordered pair | Universal property