Combinatorial game theory

Combinatorial game theory

Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field. Combinatorial games include well-known games such as chess, checkers, and Go, which are regarded as non-trivial, and tic-tac-toe, which is considered as trivial, in the sense of being "easy to solve". Some combinatorial games may also have an unbounded playing area, such as infinite chess. In combinatorial game theory, the moves in these and other games are represented as a game tree. Combinatorial games also include one-player combinatorial puzzles such as Sudoku, and no-player automata, such as Conway's Game of Life, (although in the strictest definition, "games" can be said to require more than one participant, thus the designations of "puzzle" and "automata".) Game theory in general includes games of chance, games of imperfect knowledge, and games in which players can move simultaneously, and they tend to represent real-life decision making situations. Combinatorial game theory has a different emphasis than "traditional" or "economic" game theory, which was initially developed to study games with simple combinatorial structure, but with elements of chance (although it also considers sequential moves, see extensive-form game). Essentially, combinatorial game theory has contributed new methods for analyzing game trees, for example using surreal numbers, which are a subclass of all two-player perfect-information games. The type of games studied by combinatorial game theory is also of interest in artificial intelligence, particularly for automated planning and scheduling. In combinatorial game theory there has been less emphasis on refining practical search algorithms (such as the alpha–beta pruning heuristic included in most artificial intelligence textbooks), but more emphasis on descriptive theoretical results (such as measures of game complexity or proofs of optimal solution existence without necessarily specifying an algorithm, such as the strategy-stealing argument). An important notion in combinatorial game theory is that of the solved game. For example, tic-tac-toe is considered a solved game, as it can be proven that any game will result in a draw if both players play optimally. Deriving similar results for games with rich combinatorial structures is difficult. For instance, in 2007 it was announced that checkers has been weakly solved—optimal play by both sides also leads to a draw—but this result was a computer-assisted proof. Other real world games are mostly too complicated to allow complete analysis today, although the theory has had some recent successes in analyzing Go endgames. Applying combinatorial game theory to a position attempts to determine the optimum sequence of moves for both players until the game ends, and by doing so discover the optimum move in any position. In practice, this process is torturously difficult unless the game is very simple. It can be helpful to distinguish between combinatorial "mathgames" of interest primarily to mathematicians and scientists to ponder and solve, and combinatorial "playgames" of interest to the general population as a form of entertainment and competition. However, a number of games fall into both categories. Nim, for instance, is a playgame instrumental in the foundation of combinatorial game theory, and one of the first computerized games. Tic-tac-toe is still used to teach basic principles of game AI design to computer science students. (Wikipedia).

Combinatorial game theory
Video thumbnail

Combinatorial Game Theory Book Review

Some of the links below are affiliate links. As an Amazon Associate I earn from qualifying purchases. If you purchase through these links, it won't cost you any additional cash, but it will help to support my channel. Thank you! Get the Book! https://amzn.to/2pOhUst (affiliate link) Here

From playlist Math Book Reviews

Video thumbnail

Michel Rigo: From combinatorial games to shape-symmetric morphisms

Abstract: The general aim of these lectures is to present some interplay between combinatorial game theory (CGT) and combinatorics on (multidimensional) words. In the first introductory lecture, we present some basic concepts from combinatorial game theory (positions of a game, Nim-sum, Sp

From playlist Combinatorics

Video thumbnail

Paul-André Melliès - A gentle introduction to template games and linear logic

Game semantics is the art of interpreting formulas (or types) as games and proofs (or programs) as strategies. In order to reflect the interactive behaviour of pro- grams, strategies are required to follow specific scheduling policies. Typically, in the case of a sequential programming lan

From playlist Combinatorics and Arithmetic for Physics: Special Days 2022

Video thumbnail

Introduction to Combinatory Logic – #SoME2

This is Alexander Farrugia's and Giorgio Grigolo's submission to the second 3blue1brown Summer of Math Exposition. #some2 #mathematics #combinators #logic Music: Icelandic Arpeggios – DivKid

From playlist Summer of Math Exposition 2 videos

Video thumbnail

Jules Hedges - compositional game theory - part I

Compositional game theory is an approach to game theory that is designed to have better mathematical (loosely “algebraic” and “geometric”) properties, while also being intended as a practical setting for microeconomic modelling. It gives a graphical representation of games in which the flo

From playlist compositional game theory

Video thumbnail

The Tropical Limit of String Theory and Feynman Integrals by Piotr Tourkine

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

Video thumbnail

Combinatorial Identities via both Algebraic and Combinatorial Proof [Discrete Math Class]

This video is not like my normal uploads. This is a supplemental video from one of my courses that I made in case students had to quarantine. This is a follow up to previous a video introducing combinatorial objects (in particular k-permutations and k-subsets) and a video about the sum and

From playlist Discrete Mathematics Course

Video thumbnail

Joseph Bengeloun - Quantum Mechanics of Bipartite Ribbon Graphs...

Quantum Mechanics of Bipartite Ribbon Graphs: A Combinatorial Interpretation of the Kronecker Coefficient. The action of subgroups on a product of symmetric groups allows one to enumerate different families of graphs. In particular, bipartite ribbon graphs (with at most edges) enumerate

From playlist Combinatorics and Arithmetic for Physics: 02-03 December 2020

Video thumbnail

HACKENBUSH: a window to a new world of math

A playful venture into the vast and mysterious forests of combinatorial game theory. This one simple game will change the way you look at numbers forever! Hackenbush is easy to pick up, but exploring its strategy leads us down a fantastical mathematical rabbit hole, through which can be f

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

Rade Zivaljevic (6/27/17) Bedlewo: Topological methods in discrete geometry; new developments

Some new applications of the configurations space/test map scheme can be found in Chapter 21 of the latest (third) edition of the Handbook of Discrete and Computational Geometry [2]. In this lecture we focus on some of the new developments which, due to the limitations of space, may have b

From playlist Applied Topology in Będlewo 2017

Video thumbnail

Algebraic and Convex Geometry of Sums of Squares on Varieties (Lecture 1) by Greg Blekherman

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

Video thumbnail

Nezhla Aghaei - Combinatorial Quantisation of Supergroup Chern-Simons Theory

Chern-Simons Theories with gauge super-groups appear naturally in string theory and they possess interesting applications in mathematics, e.g. for the construction of knot and link invariants. In my talk, I will review the framework of combinatorial quantization of Chern Simons theory and

From playlist Workshop on Quantum Geometry

Video thumbnail

James Propp - Conjectural Enumerations of Trimer Covers of Finite Subgraphs of the Triangular (...)

The work of Conway and Lagarias applying combinatorial group theory to packing problems suggests what we might mean by “domain-wall boundary conditions” for the trimer model on the infinite triangular lattice in which the permitted trimers are triangle trimers and three-in-a-line trimers.

From playlist Combinatorics and Arithmetic for Physics: special days

Video thumbnail

Counting To Infinity And Beyond On A Chessboard

The numbers "infinity plus 1" and "infinity squared" sound like they are made up, but mathematicians do use such numbers in set theory. They are called transfinite ordinals and they arise in combinatorial game theory. This video demonstrates an example of a transfinite value from a special

From playlist Math Puzzles, Riddles And Brain Teasers

Video thumbnail

Nevanlinna Prize Lecture: Equilibria and fixed points — Constantinos Daskalakis — ICM2018

Equilibria, fixed points, and computational complexity Constantinos Daskalakis Abstract: The concept of equilibrium, in its various forms, has played a central role in the development of Game Theory and Economics. The mathematical properties and computational complexity of equilibria are

From playlist Special / Prizes Lectures

Video thumbnail

Pablo Shmerkin: Additive combinatorics methods in fractal geometry - lecture 3

In the last few years ideas from additive combinatorics were applied to problems in fractal geometry and led to progress on some classical problems, particularly on the smoothness of Bernoulli convolutions and other self-similar measures. We will introduce some of these tools from additive

From playlist Combinatorics

Related pages

Richard K. Guy | Nim | Hot game | Recursion | Theoretical computer science | Wythoff's game | Disjunctive sum | Grundy's game | Sudoku | Dyadic rational | Surreal number | Positional game | Topological game | Partisan game | Conway's Game of Life | Chess | Solving chess | Toads and Frogs | Combinatorics | Claude Shannon | Fuzzy game | Computer-assisted proof | Game theory | Game complexity | Game tree | Perfect information | Zugzwang | Ordinal number | Domineering | Sprague–Grundy theorem | Zero game | Cooling and heating (combinatorial game theory) | Alan Turing | Sylver coinage | Bounded set | Mathematics | Set (mathematics) | Artificial intelligence | Search algorithm | Star (game theory) | Strategy-stealing argument | Infinite chess | Hackenbush | Infinitesimal | Backward induction | On Numbers and Games | Tic-tac-toe | Impartial game | Solved game | Shannon number | Extensive-form game | Alpha–beta pruning | Nimber | Sequential game