Self-dual tilings | Triangular tilings | Honeycombs (geometry)

Triangular tiling honeycomb

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling. A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. (Wikipedia).

Triangular tiling honeycomb
Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

Triangle tilings

(5,3,2) triangle tiling: http://shpws.me/NW2E (7,3,2) triangle tiling (small): http://shpws.me/NW3A (6,3,2) triangle tiling: http://shpws.me/NW3H (4,3,2) triangle tiling: http://shpws.me/NW3K (3,3,2) triangle tiling: http://shpws.me/NW3J (4,4,2) triangle tiling: http://shpws.me/NW3M

From playlist 3D printing

Video thumbnail

Domino tilings of squares | MegaFavNumbers

This video is part of the #MegaFavNumbers project. Domino tiling is a tessellation of the region in the Euclidean plane by dominos (2x1 rectangles). In this video we consider square tilings. Sequence, where each element is equal to the number of tilings of an NxN square, is growing reall

From playlist MegaFavNumbers

Video thumbnail

How Many Faces, Edges And Vertices Does A Triangular Prism Have?

How Many Faces, Edges And Vertices Does A Triangular Prism Have? Here we’ll look at how to work out the faces, edges and vertices of a triangular prism. We’ll start by counting the faces, these are the flat surfaces that make the shape. A triangular prism has 5 faces altogether - 2 tria

From playlist Faces, edges and Vertices of 3D shapes

Video thumbnail

Yoshiyuki Kotani -Tiling of 123456-edged Hexagon - G4G13 Apr 2018

The theme is the tiling of flat plane by the hexagon which has the edges of 1,2,3,4,5,6 length, and that of other polygons of different edges. It is a very tough problem to make a tiling by a different edged polygon. Polygon tiling of plane often needs edges of the same lengths. It is well

From playlist G4G13 Videos

Video thumbnail

Michael Weinstein: Dispersive waves in novel 2d media; Honeycomb structures, Edge States ...

Abstract: We discuss the 2D Schrödinger equation for periodic potentials with the symmetry of a hexagonal tiling of the plane. We first review joint work with CL Fefferman on the existence of Dirac points, conical singularities in the band structure, and the resulting effective 2D Dirac dy

From playlist Partial Differential Equations

Video thumbnail

Michael Weinstein - Discrete honeycombs, rational edges and edge states - IPAM at UCLA

Recorded 30 March 2022. Michael Weinstein of Columbia University, Applied Physics and Applied Mathematics, presents "Discrete honeycombs, rational edges and edge states" at IPAM's Multiscale Approaches in Quantum Mechanics Workshop. Abstract: We first discuss the derivation of tight bindin

From playlist 2022 Multiscale Approaches in Quantum Mechanics Workshop

Video thumbnail

Bridges 2018 talk - Visualizing hyperbolic honeycombs

This is a talk I gave at the Bridges conference on mathematics and the arts (http://bridgesmathart.org/), on 27th July 2018, about my JMA paper with Roice Nelson: https://www.tandfonline.com/doi/abs/10.1080/17513472.2016.1263789 Many high resolution images at hyperbolichoneycombs.org Ray-m

From playlist Talks

Video thumbnail

Large deviations for random hives and the spectrum of the sum of two random...- Hariharan Narayanan

Probability Seminar 11:15am|Simonyi 101 and Remote Access Large deviations for random hives and the spectrum of the sum of two random matrices Hariharan Narayanan Affiliation: Cambridge University Date: April 07, 2023  Hives, as defined by Knutson and Tao, are discrete concave functions

From playlist Mathematics

Video thumbnail

Regular polyhedra

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/q0PF.

From playlist 3D printing

Video thumbnail

Seminar In the Analysis and Methods of PDE (SIAM PDE): Michael Weinstein

Title: Effective Gaps for Time-Periodic Hamiltonians Modeling Floquet Materials Date: Thursday, February 2, 2023, 11:30 am EDT Speaker: Michael Weinstein, Columbia University Abstract: Floquet media are a type of material, in which time-periodic forcing is applied to alter the material’

From playlist Seminar In the Analysis and Methods of PDE (SIAM PDE)

Video thumbnail

Large deviations for random hives and the spectrum of the sum of two random.. by Hariharan Narayanan

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

Video thumbnail

Introduction to Tiling Theory

In this mini-lecture, we explore tilings found in everyday life and give the mathematical definition of a tiling. In particular, we think about: (i) traditional Islamic tilings; (ii) floor, wallpaper, pavement, and architectural tilings; (iii) the three regular tilings using either equilat

From playlist Maths

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

WHAT IS THE DEFINITION OF A MATHEMATICAL TILING: introducing the basics of math tiling | Nathan D.

I go through the basics behind the question, "what is the definition of a mathematical tiling". While introducing the basics of math tiling objects, we introduce the definitions of a partition, topological disc, and a prototile. By introducing these ideas and definitions, we are able to an

From playlist The New CHALKboard

Video thumbnail

How Many Faces, Edges And Vertices Does A Triangular Pyramid Have?

How Many Faces, Edges And Vertices Does A Triangular Pyramid Have? Here we’ll look at how to work out the faces, edges and vertices of a triangular pyramid. We’ll start by counting the faces, these are the flat surfaces that make the 3D shape. A triangular pyramid has 4 faces altogether

From playlist Faces, edges and Vertices of 3D shapes

Video thumbnail

James Propp - Conjectural Enumerations of Trimer Covers of Finite Subgraphs of the Triangular (...)

The work of Conway and Lagarias applying combinatorial group theory to packing problems suggests what we might mean by “domain-wall boundary conditions” for the trimer model on the infinite triangular lattice in which the permitted trimers are triangle trimers and three-in-a-line trimers.

From playlist Combinatorics and Arithmetic for Physics: special days

Video thumbnail

MagLab Theory Winter School 2019: Jennifer Cano "Topo Quantum Chem"

Topic: Topological quantum chemistry: Theory The National MagLab held it's seventh Theory Winter School in Tallahassee, FL from January 7th - 11th, 2019.

From playlist 2019 Theory Winter School

Video thumbnail

Odd Squares as Difference of Triangular Numbers (visual proof)

This is a short, animated visual proof demonstrating how to visualize odd squares as the difference of two triangular numbers. #mathshorts​ #mathvideo​ #math​ #numbertheory #mtbos​ #manim​ #animation​ #theorem​ #pww​ #proofwithoutwords​ #visualproof​ #proof​ #iteachmath #squares #triangula

From playlist Triangular Numbers

Related pages

Hexagon | Dodecagon | Alternation (geometry) | Vertex figure | Ideal point | Triangular prism | Hexagonal antiprism | Paracompact uniform honeycombs | Truncated trihexagonal tiling | Schläfli symbol | Triangular cupola | Johnson solid | Wedge (geometry) | Pyramid (geometry) | Regular 4-polytope | Rhombitrihexagonal tiling | Tessellation | Honeycomb (geometry) | Tetrahedron | Hyperbolic space | Square | Infinite-order apeirogonal tiling | Trihexagonal tiling | Hexagonal tiling honeycomb | Coxeter group | Hexagonal prism | Hexagonal tiling | Triangular tiling | Regular Polytopes (book) | Coxeter notation | Order-6 hexagonal tiling honeycomb | Triangle | Truncated hexagonal tiling | Isosceles trapezoid