Truncated tilings | 5-polytopes | Honeycombs (geometry)

Steritruncated 16-cell honeycomb

In four-dimensional Euclidean geometry, the steritruncated 16-cell honeycomb is a uniform space-filling honeycomb, with runcinated 24-cell, truncated 16-cell, octahedral prism, 3-6 duoprism, and truncated tetrahedral prism cells. (Wikipedia).

Video thumbnail

Sudoku Colorings of a 16-cell Pre-Fractal – Hideki Tsuiki

This is a joint work with Yasuyuki Tsukamoto. 16-cell is a 4-dimensional polytope with a lot of beautiful properties, in particular with respect to cubic projections of a fractal based on it. We define SUDOKU-like colorings of a 3D cubic lattice which is defined based on properties of a

From playlist G4G12 Videos

Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

24-Cell

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/11g4

From playlist 3D printing

Video thumbnail

David Hall - Recipe for a 'bola Honeycombs - G4G13 Apr 2018

Develop a honeycomb grid of integers which becomes the basis for a 3D parabolic polyheda.

From playlist G4G13 Videos

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

Cuboctahedral Fractal Graph

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/17d5

From playlist 3D printing

Video thumbnail

Vertex centered 24-Cell

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/nFtC.

From playlist 3D printing

Video thumbnail

Mandelbrot Quintet Fractal (a 5 rep-tile): Order from Chaos (visual construction)

In this video, we show how to use a random process of iteratively applying five (affine) linear transformations in the real plane to generate a 5-rep-tile known as the Mandelbrot Quintet. What happens if you do something similar with different affine linear transformations? If you like th

From playlist Fractals

Video thumbnail

The Beauty of Fractal Geometry (#SoME2)

0:00 — Sierpiński carpet 0:18 — Pythagoras tree 0:37 — Pythagoras tree 2 0:50 — Unnamed fractal circles 1:12 — Dragon Curve 1:30 — Barnsley fern 1:44 — Question for you! 2:05 — Koch snowflake 2:26 — Sierpiński triangle 2:47 — Cantor set 3:03 — Hilbert curve 3:22 — Unnamed fractal squares 3

From playlist Summer of Math Exposition 2 videos

Video thumbnail

6. Natural Honeycombs: Wood

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session covers wood structure, micro-structure, stress-strain, honeycomb models, and bending. License: Creative Commons BY-NC

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Inverse problem by Abhinav Kumar

DISCUSSION MEETING SPHERE PACKING ORGANIZERS: Mahesh Kakde and E.K. Narayanan DATE: 31 October 2019 to 06 November 2019 VENUE: Madhava Lecture Hall, ICTS Bangalore Sphere packing is a centuries-old problem in geometry, with many connections to other branches of mathematics (number the

From playlist Sphere Packing - 2019

Video thumbnail

Lattice realization of integer QHE of bosons by Subhro Bhattacharjee

New questions in quantum field theory from condensed matter theory URL: http://www.icts.res.in/discussion_meeting/qft2015/ Description:- The last couple of decades have seen a major revolution in the field of condensed matter physics, where the severe limitations of conventional paradigm

From playlist New questions in quantum field theory from condensed matter theory

Video thumbnail

3. Structure of Cellular Solids

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson The structure of cellular materials, honeycombs and modeling honeycombs are explored in this session. License: Creative Commons BY

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Magnetic Excitations in 2D Van Der Waals Honeycomb Ferromagnets by Pengcheng Dai

DISCUSSION MEETING TARGETED QUESTIONS IN CONDENSED MATTER (ONLINE) ORGANIZERS: Subhro Bhattacharjee (ICTS - TIFR, India), Arun Paramekanti (University of Toronto, Canada) and Nandini Trivedi (The Ohio State University, USA) DATE: 22 September 2022, 18:30 to 22:00IST VENUE: Online The

From playlist TARGETED QUESTIONS IN CONDENSED MATTER (ONLINE) - 2022

Video thumbnail

Randomness and topology in correlated insulators by Itamar Kimchi

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS: Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Video thumbnail

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

4. Honeycombs: In-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session includes a review of honeycombs, and explores the mechanical properties of honeycombs. License: Creative Commons BY-N

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

What is a Tensor? Lesson 38: Visualization of Forms: Tacks and Sheaves. And Honeycombs.

What is a Tensor? Lesson 38: Visualization of Forms Part 2 Continuing to complete the "visualization" of the four different 3-dimensional vector spaces when dim(V)=3. Erratta: Note: When the coordinate system is expanded the density of things *gets numerically larger* and the area/volum

From playlist What is a Tensor?

Video thumbnail

1. Introduction and Overview (MIT 3.054 Cellular Solids: Structure, Properties, Applications, S15)

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson An overview of the course and an introduction to the topic is given in this session. License: Creative Commons BY-NC-SA More infor

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Tesseract and 16-Cell

This shows two 3d prints of mathematical sculptures I produced using shapeways.com. These models are available at http://shpws.me/1jPw and http://shpws.me/3aqS

From playlist 3D printing

Related pages

16-cell honeycomb | Regular Polytopes (book) | Snub 24-cell honeycomb | Duoprism | 5-cell honeycomb | Octahedral prism | Vertex figure | Euclidean geometry | Schläfli symbol | Tesseractic honeycomb | Coxeter group | 24-cell honeycomb | Truncated tetrahedral prism | Rectified 24-cell honeycomb | Four-dimensional space | Truncated 5-cell honeycomb | Honeycomb (geometry)