5-polytopes | Honeycombs (geometry)

Rectified 24-cell honeycomb

In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesseract and rectified 24-cell cells. (Wikipedia).

Rectified 24-cell honeycomb
Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

Rectified Tesseract

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/2Uh3

From playlist 3D printing

Video thumbnail

24-Cell

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/11g4

From playlist 3D printing

Video thumbnail

Vertex centered 24-Cell

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/nFtC.

From playlist 3D printing

Video thumbnail

Sudoku Colorings of a 16-cell Pre-Fractal – Hideki Tsuiki

This is a joint work with Yasuyuki Tsukamoto. 16-cell is a 4-dimensional polytope with a lot of beautiful properties, in particular with respect to cubic projections of a fractal based on it. We define SUDOKU-like colorings of a 3D cubic lattice which is defined based on properties of a

From playlist G4G12 Videos

Video thumbnail

Particle distribution in a honeycomb maze with rounded cells

This simulation shows the particle distribution in a honeycomb maze, which was introduced in the video https://youtu.be/a3ICP1wQyR8 . The walls of each hexagonal cell are part of a same circle which is inscribed in the hexagon. As we have seen in the previous video, particles can spend lon

From playlist Illumination problem

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

David Hall - Recipe for a 'bola Honeycombs - G4G13 Apr 2018

Develop a honeycomb grid of integers which becomes the basis for a 3D parabolic polyheda.

From playlist G4G13 Videos

Video thumbnail

Sabine Segre - Rep-Tile Tangram - G4G14 Apr 2022

Each of the seven pieces of the classical Chinese tangram puzzle can be assembled from exactly these seven (scaled down) pieces. Therefore, we can look at repeated tilings (rep-tiles) made from tangram pieces. In case of so far in the literature discussed rep-tiles, one and the same tile i

From playlist G4G14 Videos

Video thumbnail

4. Honeycombs: In-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session includes a review of honeycombs, and explores the mechanical properties of honeycombs. License: Creative Commons BY-N

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

10. Exam Review

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Professor Gibson takes questions from students in order to review concepts that will be covered on the midterm exam. License: Crea

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

1968 HOW VACUUM TUBES are Made: English Electric Valve Co EEV Television Radio Radar CRT Cameras

The following film focuses on the English Electric Valve Company, EEV, produced this 1968 documentary on how vacuum tubes ("valves" in the UK) are created and used. Shows manufacturing of Magnatrons, Klystrons, Image Orthicon (tv camera), cathode ray tubes, thyratrons, rectifiers and othe

From playlist Early Vacuum Tube Computers - 1940's and 1950's.

Video thumbnail

Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids by Simon Trebst

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Video thumbnail

Fano Lineshape of the Optical Phonons in Kitaev Materials by Swetlana Swarup

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Video thumbnail

3. Structure of Cellular Solids

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson The structure of cellular materials, honeycombs and modeling honeycombs are explored in this session. License: Creative Commons BY

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Dance of the bees: Heat map representation of a billiard in a honeycomb maze with rounded corners

The maze featured in this simulation is a honeycomb maze with rounded corners. The circular arcs of a given cell all share the middle point of the hexagon as common center. This seems to slow down the diffusion of the particles through the maze, probably because the billiard in a circle ha

From playlist Illumination problem

Video thumbnail

13. Tissue Engineering Scaffolds: Processing and Properties

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session covers fabrication, microstructure and mechanical properties of osteochondral scaffold. License: Creative Commons BY-

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Determine if a set of points makes up a rectangle using the distance formula

👉 Learn how to determine the figure given four points. A quadrilateral is a polygon with four sides. Some of the types of quadrilaterals are: parallelogram, square, rectangle, rhombus, kite, trapezoid, etc. Each of the types of quadrilateral has its properties. Given four points that repr

From playlist Quadrilaterals on a Coordinate Plane

Video thumbnail

Randomness and topology in correlated insulators by Itamar Kimchi

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS: Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Related pages

Euclidean geometry | Truncated 24-cell honeycomb | Tetrahedral prism | Vertex figure | 16-cell honeycomb | 5-cell honeycomb | Schläfli symbol | Tesseractic honeycomb | Rectified 24-cell | Facet (geometry) | 24-cell honeycomb | Harold Scott MacDonald Coxeter | Truncated 5-cell honeycomb | Honeycomb (geometry) | Tesseract | Rectification (geometry) | Coxeter group | Uniform 5-polytope | Cube | Cuboctahedron | Regular Polytopes (book) | Snub 24-cell honeycomb | Triangle | Four-dimensional space