Sorting algorithms

Schwartzian transform

In computer programming, the Schwartzian transform is a technique used to improve the efficiency of sorting a list of items. This idiom is appropriate for comparison-based sorting when the ordering is actually based on the ordering of a certain property (the key) of the elements, where computing that property is an intensive operation that should be performed a minimal number of times. The Schwartzian transform is notable in that it does not use named temporary arrays. The Schwartzian transform is a version of a Lisp idiom known as decorate-sort-undecorate, which avoids recomputing the sort keys by temporarily associating them with the input items. This approach is similar to memoization, which avoids repeating the calculation of the key corresponding to a specific input value. By comparison, this idiom assures that each input item's key is calculated exactly once, which may still result in repeating some calculations if the input data contains duplicate items. The idiom is named after Randal L. Schwartz, who first demonstrated it in Perl shortly after the release of Perl 5 in 1994. The term "Schwartzian transform" applied solely to Perl programming for a number of years, but it has later been adopted by some users of other languages, such as Python, to refer to similar idioms in those languages. However, the algorithm was already in use in other languages (under no specific name) before it was popularized among the Perl community in the form of that particular idiom by Schwartz. The term "Schwartzian transform" indicates a specific idiom, and not the algorithm in general. For example, to sort the word list ("aaaa","a","aa") according to word length: first build the list (["aaaa",4],["a",1],["aa",2]), then sort it according to the numeric values getting (["a",1],["aa",2],["aaaa",4]), then strip off the numbers and you get ("a","aa","aaaa"). That was the algorithm in general, so it does not count as a transform. To make it a true Schwartzian transform, it would be done in Perl like this: @sorted = map { $_->[0] } sort { $a->[1] <=> $b->[1] or $a->[0] cmp $b->[0] } # Use numeric comparison, fall back to string sort on original map { [$_, length($_)] } # Calculate the length of the string @unsorted; (Wikipedia).

Video thumbnail

Math 139 Fourier Analysis Lecture 16: Basic Properties of the Fourier Transform

Fourier transform on Schwartz class functions. Interaction of Fourier transform with translations, etc.; closure of Schwartz class under Fourier transform. The Gaussian: definition; Gaussian is preserved by Fourier transform.

From playlist Course 8: Fourier Analysis

Video thumbnail

Introduction to the z-Transform

http://AllSignalProcessing.com for more great signal processing content, including concept/screenshot files, quizzes, MATLAB and data files. Introduces the definition of the z-transform, the complex plane, and the relationship between the z-transform and the discrete-time Fourier transfor

From playlist The z-Transform

Video thumbnail

z-Transform Analysis of LTI Systems

http://AllSignalProcessing.com for more great signal processing content, including concept/screenshot files, quizzes, MATLAB and data files. Introduction to analysis of systems described by linear constant coefficient difference equations using the z-transform. Definition of the system fu

From playlist The z-Transform

Video thumbnail

The Two-Dimensional Discrete Fourier Transform

The two-dimensional discrete Fourier transform (DFT) is the natural extension of the one-dimensional DFT and describes two-dimensional signals like images as a weighted sum of two dimensional sinusoids. Two-dimensional sinusoids have a horizontal frequency component and a vertical frequen

From playlist Fourier

Video thumbnail

The Fourier Transform and Derivatives

This video describes how the Fourier Transform can be used to accurately and efficiently compute derivatives, with implications for the numerical solution of differential equations. Book Website: http://databookuw.com Book PDF: http://databookuw.com/databook.pdf These lectures follow

From playlist Fourier

Video thumbnail

Math 139 Fourier Analysis Lecture 26: Radial symmetry and Fourier transform. Radon transform.

Fourier transforms of radial functions: relations (involving Bessel functions) Radon transform: X-ray transform; Radon transform of Schwartz functions on R^3; Fourier Projection theorem (Fourier Slice theorem)

From playlist Course 8: Fourier Analysis

Video thumbnail

Math 139 Fourier Analysis Lecture 15: The Fourier Transform

The Fourier Transform: improper integrals; functions of moderate decrease; properties of improper integrals of functions of moderate decrease; the Fourier transform (of a function of moderate decrease); rapidly decreasing functions; Schwartz class functions; Fourier transform of Schwartz c

From playlist Course 8: Fourier Analysis

Video thumbnail

Compositional Structure of Classical Integral Transforms

The recently implemented fractional order integro-differentiation operator, FractionalD, is a particular case of more general integral transforms. The majority of classical integral transforms are representable as compositions of only two transforms: the modified direct and inverse Laplace

From playlist Wolfram Technology Conference 2022

Video thumbnail

Lecture 22, The z-Transform | MIT RES.6.007 Signals and Systems, Spring 2011

Lecture 22, The z-Transform Instructor: Alan V. Oppenheim View the complete course: http://ocw.mit.edu/RES-6.007S11 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT RES.6.007 Signals and Systems, 1987

Video thumbnail

Lecture 7 | The Fourier Transforms and its Applications

Lecture by Professor Brad Osgood for the Electrical Engineering course, The Fourier Transforms and its Applications (EE 261). Professor Osgood reintroduces the Fourier Transform and its inverse, then he goes into specific properties and transforms. The Fourier transform is a tool for s

From playlist Lecture Collection | The Fourier Transforms and Its Applications

Video thumbnail

Lecture 13 | The Fourier Transforms and its Applications

Lecture by Professor Brad Osgood for the Electrical Engineering course, The Fourier Transforms and its Applications (EE 261). In this lecture, Professor Osgood demonstrates Fourier transforms of a general distribution. The Fourier transform is a tool for solving physical problems. In t

From playlist Lecture Collection | The Fourier Transforms and Its Applications

Video thumbnail

ME565 Lecture 21: The Laplace Transform

ME565 Lecture 21 Engineering Mathematics at the University of Washington Laplace Transform Notes: http://faculty.washington.edu/sbrunton/me565/pdf/L21.pdf Course Website: http://faculty.washington.edu/sbrunton/me565/ http://faculty.washington.edu/sbrunton/

From playlist Engineering Mathematics (UW ME564 and ME565)

Video thumbnail

Lec 5 | MIT RES.6-008 Digital Signal Processing, 1975

Lecture 5: The z-transform Instructor: Alan V. Oppenheim View the complete course: http://ocw.mit.edu/RES6-008S11 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT RES.6-008 Digital Signal Processing, 1975

Video thumbnail

The Laplace Transform: A Generalized Fourier Transform

This video is about the Laplace Transform, a powerful generalization of the Fourier transform. It is one of the most important transformations in all of science and engineering. @eigensteve on Twitter Brunton Website: eigensteve.com Book Website: http://databookuw.com Book PDF: http:/

From playlist Data-Driven Science and Engineering

Video thumbnail

Lecture: The Z transform 2018-10-29

This (long) video takes you all the way through the process of understanding the Z transform and how it relates to the Laplace transform for simulation.

From playlist Discrete

Video thumbnail

Laplace Transform: First Order Equation

MIT RES.18-009 Learn Differential Equations: Up Close with Gilbert Strang and Cleve Moler, Fall 2015 View the complete course: http://ocw.mit.edu/RES-18-009F15 Instructor: Gilbert Strang Transform each term in the linear differential equation to create an algebra problem. You can transfor

From playlist Fourier

Video thumbnail

Functional Analysis Lecture 07 2014 02 11 Riesz Interpolation Theorem, Part 2

Proof of theorem in case of general L^p functions. Using Riesz interpolation to extend Fourier transform. Rapidly decreasing functions; Schwartz class functions. Fourier transform of a Schwartz class function. Properties of Fourier transform (interaction with basic operations); Fourie

From playlist Course 9: Basic Functional and Harmonic Analysis

Video thumbnail

The Fourier Transform Part 2

Lecture with Ole Christensen. Kapitler: 00:00 - Reaching The Goal; 05:00 - Problem With The Fourier Transform; 13:45 - Where Does The Fourier Transform Map Into?; 16:45 - Is F Bounded?; 20:00 - Fourier Transform On L2; 30:00 - Using The Extension Theorem;

From playlist DTU: Mathematics 4 Real Analysis | CosmoLearning.org Math

Related pages

Sorting | Racket (programming language) | Comparison sort