Quotient objects | Module theory

Quotient module

In algebra, given a module and a submodule, one can construct their quotient module. This construction, described below, is very similar to that of a quotient vector space. It differs from analogous quotient constructions of rings and groups by the fact that in these cases, the subspace that is used for defining the quotient is not of the same nature as the ambient space (that is, a quotient ring is the quotient of a ring by an ideal, not a subring, and a quotient group is the quotient of a group by a normal subgroup, not by a general subgroup). Given a module A over a ring R, and a submodule B of A, the quotient space A/B is defined by the equivalence relation if and only if for any a and b in A. The elements of A/B are the equivalence classes [a] = a + B = {a + b : b in B}. The function π: A → A/B sending a in A to its equivalence class a + B is called the quotient map or the projection map, and is a module homomorphism. The addition operation on A/B is defined for two equivalence classes as the equivalence class of the sum of two representatives from these classes; and scalar multiplication of elements of A/B by elements of R is defined similarly. Note that it has to be shown that these operations are well-defined. Then A/B becomes itself an R-module, called the quotient module. In symbols, (a + B) + (b + B) := (a + b) + B, and r · (a + B) := (r · a) + B, for all a, b in A and r in R. (Wikipedia).

Video thumbnail

Quotient group example

Now that we know what a quotient group is, let's take a look at an example to cement our understanding of the concepts involved.

From playlist Abstract algebra

Video thumbnail

Quotient groups

The idea of a quotient group follows easily from cosets and Lagrange's theorem. In this video, we start with a normal subgroup and develop the idea of a quotient group, by viewing each coset (together with the normal subgroup) as individual mathematical objects in a set. This set, under

From playlist Abstract algebra

Video thumbnail

RNT1.4. Ideals and Quotient Rings

Ring Theory: We define ideals in rings as an analogue of normal subgroups in group theory. We give a correspondence between (two-sided) ideals and kernels of homomorphisms using quotient rings. We also state the First Isomorphism Theorem for Rings and give examples.

From playlist Abstract Algebra

Video thumbnail

Learn the basics for simplifying an expression using the rules of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Simplify an expression by applying quotient rule of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Learn how to simplify a monomial by applying quotient rule of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Simplifying a monomial using the rules of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Learn the basics in simplifying an expression using the quotient rule of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Simplifying an expression using properties of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Commutative algebra 24 Artinian modules

This lecture is part of an online course on commutative algebra, following the book "Commutative algebra with a view toward algebraic geometry" by David Eisenbud. We define Artinian rings and modules, and give several examples of them. We then study finite length modules, show that they

From playlist Commutative algebra

Video thumbnail

Kazhdan-Lusztig category - Jin-Cheng Guu

Quantum Groups Seminar Topic: Kazhdan-Lusztig category Speaker: Jin-Cheng Guu Affiliation: Stony Brook University Date: May 06, 2021 For more video please visit http://video.ias.edu

From playlist Quantum Groups Seminar

Video thumbnail

Lecture 17. Isomorphism theorems. Free modules

0:00 0:19 1st isomorphism theorem 1:15 2nd isomorphism theorem 4:56 3rd isomorphism theorem 9:40 Submodules of a quotient module 12:55 Generators 18:34 Finitely generated modules 30:21 Cautionary example: not every submodule of a finitely generated module is finitely generated 33:18 Linea

From playlist Abstract Algebra 2

Video thumbnail

The TRUTH about TENSORS, Part 3 The Tensoring

We finally start talking about the definition of tensors in terms of a universal property.

From playlist The TRUTH about TENSORS

Video thumbnail

Eugen Hellmann: On the derived category of the Iwahori-Hecke algebra

SMRI Algebra and Geometry Online 'On the derived category of the Iwahori-Hecke algebra' Eugen Hellmann (University of Münster) Abstract: In this talk I will state a conjecture which predicts that the derived category of smooth representations of a p-adic split reductive group admits a ful

From playlist SMRI Algebra and Geometry Online

Video thumbnail

Proof: Structure Theorem for Finitely Generated Torsion Modules Over a PID

This video has chapters to make the proof easier to follow. Splitting explanation: https://youtu.be/ZINtBNje_08 In this video we give a proof of the classification theorem using two smaller proofs by induction. We show both the elementary divisor form and the invariant factor form of a m

From playlist Ring & Module Theory

Video thumbnail

Gregory Henselman-Petrusek (9/28/22): Saecular persistence

Homology with field coefficients has become a mainstay of modern TDA, thanks in part to structure theorems which decompose the corresponding persistence modules. This naturally begs the question -- what of integer coefficients? Or homotopy? We introduce saecular persistence, a categoric

From playlist AATRN 2022

Video thumbnail

Nakayama's Lemma - April 12 2021

This is a video from by Abstract Algebra 4 course that took place in Spring 2021.

From playlist Course on Rings and Modules (Abstract Algebra 4) [Graduate Course]

Video thumbnail

Simplify a rational expression by using properties of exponents

👉 Learn how to simplify expressions using the quotient rule of exponents. The quotient rule of exponents states that the quotient of powers with a common base is equivalent to the power with the common base and an exponent which is the difference of the exponents of the term in the numerat

From playlist Simplify Using the Rules of Exponents | Quotient Rule

Video thumbnail

Commutative algebra 27 (Associated primes)

This lecture is part of an online course on commutative algebra, following the book "Commutative algebra with a view toward algebraic geometry" by David Eisenbud. We show that every finitely generated module M over a Noetherian ring R can broken up into modules of the form R/p for p prime

From playlist Commutative algebra

Related pages

Quotient ring | If and only if | Subring | Ideal (ring theory) | Group (mathematics) | Quotient space (topology) | Quotient (universal algebra) | Algebra | Polynomial ring | Quotient group | Module homomorphism | Equivalence class | Addition | Function (mathematics) | Real number | Normal subgroup | Ring (mathematics) | Equivalence relation | Subgroup | Complex number | Module (mathematics)