5-polytopes | Honeycombs (geometry)

Pentagrammic-order 600-cell honeycomb

In the geometry of hyperbolic 4-space, the pentagrammic-order 600-cell honeycomb is one of four regular star-honeycombs. With Schläfli symbol {3,3,5,5/2}, it has five 600-cells around each face in a pentagrammic arrangement. It is dual to the small stellated 120-cell honeycomb. It can be considered the higher-dimensional analogue of the 4-dimensional icosahedral 120-cell and the 3-dimensional great dodecahedron. It is related to the order-5 icosahedral 120-cell honeycomb and great 120-cell honeycomb: the icosahedral 120-cells and great 120-cells in each honeycomb are replaced by the 600-cells that are their convex hulls, thus forming the pentagrammic-order 600-cell honeycomb. This honeycomb can also be constructed by taking the order-5 5-cell honeycomb and replacing clusters of 600 5-cells meeting at a vertex with 600-cells. Each 5-cell belongs to five such clusters, and thus the pentagrammic-order 600-cell honeycomb has density 5. (Wikipedia).

Pentagrammic-order 600-cell honeycomb
Video thumbnail

Half of a 600-cell

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/3NgS

From playlist 3D printing

Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

Regular polyhedra

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/q0PF.

From playlist 3D printing

Video thumbnail

Particle distribution in a honeycomb maze with rounded cells

This simulation shows the particle distribution in a honeycomb maze, which was introduced in the video https://youtu.be/a3ICP1wQyR8 . The walls of each hexagonal cell are part of a same circle which is inscribed in the hexagon. As we have seen in the previous video, particles can spend lon

From playlist Illumination problem

Video thumbnail

plotting square roots 2

more practice plotting square roots

From playlist Arithmetic and Pre-Algebra: Number Sense and Properties

Video thumbnail

Inverse problem by Abhinav Kumar

DISCUSSION MEETING SPHERE PACKING ORGANIZERS: Mahesh Kakde and E.K. Narayanan DATE: 31 October 2019 to 06 November 2019 VENUE: Madhava Lecture Hall, ICTS Bangalore Sphere packing is a centuries-old problem in geometry, with many connections to other branches of mathematics (number the

From playlist Sphere Packing - 2019

Video thumbnail

How to construct a Tetrahedron

How the greeks constructed the first platonic solid: the regular tetrahedron. Source: Euclids Elements Book 13, Proposition 13. In geometry, a tetrahedron also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. Th

From playlist Platonic Solids

Video thumbnail

Dual Half 120- and 600-Cells

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/3NgX

From playlist 3D printing

Video thumbnail

What is a Tensor? Lesson 38: Visualization of Forms: Tacks and Sheaves. And Honeycombs.

What is a Tensor? Lesson 38: Visualization of Forms Part 2 Continuing to complete the "visualization" of the four different 3-dimensional vector spaces when dim(V)=3. Erratta: Note: When the coordinate system is expanded the density of things *gets numerically larger* and the area/volum

From playlist What is a Tensor?

Video thumbnail

6. Natural Honeycombs: Wood

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session covers wood structure, micro-structure, stress-strain, honeycomb models, and bending. License: Creative Commons BY-NC

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

10. Exam Review

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Professor Gibson takes questions from students in order to review concepts that will be covered on the midterm exam. License: Crea

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Cube Roots of -8

Precalculus: Find the cube roots of -8 in the complex numbers, and sketch as points in the complex plane. We employ two approaches: one using deMoivre's Theorem, and the other by factoring z^3 + 8.

From playlist Precalculus

Video thumbnail

3 - Kick-off afternoon : Thomas Hales, Formalizing the proof of the Kepler Conjecture

Thomas Hales (University of Pittsburgh): Formalizing the proof of the Kepler Conjecture

From playlist T2-2014 : Semantics of proofs and certified mathematics

Video thumbnail

1. Introduction and Overview (MIT 3.054 Cellular Solids: Structure, Properties, Applications, S15)

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson An overview of the course and an introduction to the topic is given in this session. License: Creative Commons BY-NC-SA More infor

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

7. Natural Honeycombs: Cork; Foams: Linear Elasticity

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session begins with a look at cork as a natural honeycomb structure, and covers properties of foams and some modeling. Licens

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Amina Buhler - The Magic of Polytopes-Mandalas - CoM July 2021

Polytopes are 3-Dimensional shadows from higher dimensional polyhedra (4-Dimensional & above). These 3-D shadows, when rotated suddenly out of chaos, line-up & reveal, cast mandala patterns into 2-D of 2,3, & 5-fold symmetry. While constructing a stainless steel 120-cell (4-D dodecahed

From playlist Celebration of Mind 2021

Video thumbnail

Subtract Square Expressions with a Variable - Simplifying Required

This video explains how to simplify and subtract square root expressions. http://mathispower4u.com

From playlist Adding and Subtracting Radicals

Video thumbnail

What is a Tensor? Lesson 39: All Possible Operations

What is a Tensor? Lesson 39: All Possible Operations I moved rather quickly through this material because it is not a critical "need to know" topic. However, it was more interesting than I expected it to be.

From playlist What is a Tensor?

Related pages

Vertex figure | Great 120-cell honeycomb | Schläfli symbol | Order-5 icosahedral 120-cell honeycomb | Tetrahedron | Honeycomb (geometry) | Regular polytope | Hyperbolic space | 5-cell | Coxeter group | Great dodecahedron | Icosahedral 120-cell | Order-5 5-cell honeycomb | Regular Polytopes (book) | Density (polytope) | Small stellated 120-cell honeycomb | 600-cell | Geometry | Triangle | Pentagram | Great 120-cell