Quantum models

List of quantum-mechanical systems with analytical solutions

Much insight in quantum mechanics can be gained from understanding the closed-form solutions to the time-dependent non-relativistic Schrödinger equation. It takes the form where is the wave function of the system, is the Hamiltonian operator, and is time. Stationary states of this equation are found by solving the time-independent Schrödinger equation, which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found. These quantum-mechanical systems with analytical solutions are listed below. (Wikipedia).

Video thumbnail

Peter Zoller: Introduction to quantum optics - Lecture 4

Abstract: Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective

From playlist Mathematical Physics

Video thumbnail

Peter Zoller: Introduction to quantum optics - Lecture 2

Abstract: Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective

From playlist Mathematical Physics

Video thumbnail

Peter Zoller: Introduction to quantum optics - Lecture 1

Abstract: Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective

From playlist Mathematical Physics

Video thumbnail

Peter Zoller: Introduction to quantum optics - Lecture 3

Abstract: Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective

From playlist Mathematical Physics

Video thumbnail

Intro to Linear Systems: 2 Equations, 2 Unknowns - Dr Chris Tisdell Live Stream

Free ebook http://tinyurl.com/EngMathYT Basic introduction to linear systems. We discuss the case with 2 equations and 2 unknowns. A linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that ar

From playlist Intro to Linear Systems

Video thumbnail

Review of Linear Time Invariant Systems

http://AllSignalProcessing.com for more great signal-processing content: ad-free videos, concept/screenshot files, quizzes, MATLAB and data files. Review: systems, linear systems, time invariant systems, impulse response and convolution, linear constant-coefficient difference equations

From playlist Introduction and Background

Video thumbnail

When do linear systems have solutions?

How to determine the solution structure to a linear system of simultaneous equations. Several examples are discussed.

From playlist Intro to Linear Systems

Video thumbnail

Solve Linear Systems of Equations

How to solve linear systems via matrices. We discuss consistent and inconsistent forms and show how to solve.

From playlist Intro to Linear Systems

Video thumbnail

Quantum Mechanics 1.1: Introduction

In this video I provide some motivation behind the development of quantum mechanics, kicking off a new series on everything you've been wondering about quantum mechanics! Twitter: https://twitter.com/SciencePlease_

From playlist Quantum Mechanics

Video thumbnail

Discussion Meeting for Thermalization, Many body localization and Hydrodynamics

PROGRAM THERMALIZATION, MANY BODY LOCALIZATION AND HYDRODYNAMICS ORGANIZERS: Dmitry Abanin, Abhishek Dhar, François Huveneers, Takahiro Sagawa, Keiji Saito, Herbert Spohn and Hal Tasaki DATE : 11 November 2019 to 29 November 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore How do is

From playlist Thermalization, Many Body Localization And Hydrodynamics 2019

Video thumbnail

Introduction to Resurgence, Trans-series and Non-perturbative Physics - I by Gerald Dunne

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

The IR-truncated PT −symmetric V = ix3 model and its asymptotic by Uwe Guenther

PROGRAM NON-HERMITIAN PHYSICS - PHHQP XVIII DATE :04 June 2018 to 13 June 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore Non-Hermitian Physics-"Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) XVIII" is the 18th meeting in the series that is being held over the years in Qua

From playlist Non-Hermitian Physics - PHHQP XVIII

Video thumbnail

Unmasking PT Symmetry by Carl M. Bender

PROGRAM NON-HERMITIAN PHYSICS (ONLINE) ORGANIZERS: Manas Kulkarni (ICTS, India) and Bhabani Prasad Mandal (Banaras Hindu University, India) DATE: 22 March 2021 to 26 March 2021 VENUE: Online Non-Hermitian Systems / Open Quantum Systems are not only of fundamental interest in physics a

From playlist Non-Hermitian Physics (ONLINE)

Video thumbnail

Non-Hermitian Hamiltonians and Low-Energy Scattering in one Dimension by Ali Mostafazadeh

PROGRAM NON-HERMITIAN PHYSICS (ONLINE) ORGANIZERS: Manas Kulkarni (ICTS, India) and Bhabani Prasad Mandal (Banaras Hindu University, India) DATE: 22 March 2021 to 26 March 2021 VENUE: Online Non-Hermitian Systems / Open Quantum Systems are not only of fundamental interest in physics a

From playlist Non-Hermitian Physics (ONLINE)

Video thumbnail

An Introduction to the AdS/CFT Correspondence (Lecture 1) by David Berenstein

PROGRAM NONPERTURBATIVE AND NUMERICAL APPROACHES TO QUANTUM GRAVITY, STRING THEORY AND HOLOGRAPHY (HYBRID) ORGANIZERS: David Berenstein (University of California, Santa Barbara, USA), Simon Catterall (Syracuse University, USA), Masanori Hanada (University of Surrey, UK), Anosh Joseph (II

From playlist NUMSTRING 2022

Video thumbnail

Gérald DUNNE - Resurgent Trans-series Analysis of Hopf Algebraic Renormalization

In the Kreimer-Connes Hopf algebraic approach to renormalization, for certain QFTs the Dyson-Schwinger equations can be reduced to nonlinear differential equations. I describe methods based on Ecalle's theory of resurgent trans-series to extract non-perturbative information from these Dyso

From playlist Algebraic Structures in Perturbative Quantum Field Theory: a conference in honour of Dirk Kreimer's 60th birthday

Video thumbnail

Panorama of Mathematics: Andrew Neitzke

Panorama of Mathematics To celebrate the tenth year of successful progression of our cluster of excellence we organized the conference "Panorama of Mathematics" from October 21-23, 2015. It outlined new trends, results, and challenges in mathematical sciences. Andrew Neitzke: "Some new g

From playlist Panorama of Mathematics

Video thumbnail

Anomalous transport in one-dimensional quantum systems by Vir Bulchandani

PROGRAM THERMALIZATION, MANY BODY LOCALIZATION AND HYDRODYNAMICS ORGANIZERS: Dmitry Abanin, Abhishek Dhar, François Huveneers, Takahiro Sagawa, Keiji Saito, Herbert Spohn and Hal Tasaki DATE : 11 November 2019 to 29 November 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore How do is

From playlist Thermalization, Many Body Localization And Hydrodynamics 2019

Video thumbnail

Linear systems: 2 equations, 2 unknowns

Basic introduction on how to solve linear systems of equations. Several examples are discussed and geometrically depicted through Geogebra.

From playlist Intro to Linear Systems of Simultaneous Equations

Related pages

Schrödinger equation | Quantum harmonic oscillator | Delta potential | Rigid rotor | Two-state quantum system | Hooke's atom | Particle in a box | Hydrogen atom | Particle in a ring | Spherium | Finite potential well | Pöschl–Teller potential | Airy function | Morse potential | List of integrable models | Dirichlet boundary condition | Rectangular potential barrier | WKB approximation | Quantum pendulum | Free particle | Particle in a spherically symmetric potential