Infinite group theory | Abelian group theory

Height (abelian group)

In mathematics, the height of an element g of an abelian group A is an invariant that captures its divisibility properties: it is the largest natural number N such that the equation Nx = g has a solution x ∈ A, or the symbol ∞ if there is no such N. The p-height considers only divisibility properties by the powers of a fixed prime number p. The notion of height admits a refinement so that the p-height becomes an ordinal number. Height plays an important role in Prüfer theorems and also in Ulm's theorem, which describes the classification of certain infinite abelian groups in terms of their Ulm factors or Ulm invariants. (Wikipedia).

Video thumbnail

Group theory 17: Finite abelian groups

This lecture is part of a mathematics course on group theory. It shows that every finitely generated abelian group is a sum of cyclic groups. Correction: At 9:22 the generators should be g, h+ng not g, g+nh

From playlist Group theory

Video thumbnail

Every Group of Order Five or Smaller is Abelian Proof

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Every Group of Order Five or Smaller is Abelian Proof. In this video we prove that if G is a group whose order is five or smaller, then G must be abelian.

From playlist Abstract Algebra

Video thumbnail

Groups and subgroups

Jacob explains the fundamental concepts in group theory of what groups and subgroups are, and highlights a few examples of groups you may already know. Abelian groups are named in honor of Niels Henrik Abel (https://en.wikipedia.org/wiki/Niels_Henrik_Abel), who pioneered the subject of

From playlist Basics: Group Theory

Video thumbnail

Group theory 31: Free groups

This lecture is part of an online math course on group theory. We review free abelian groups, then construct free (non-abelian) groups, and show that they are given by the set of reduced words, and as a bonus find that they are residually finite.

From playlist Group theory

Video thumbnail

Small Height and Infinite Non-Abelian Extensions - Philipp Habegger

Philipp Habegger University of Frankfurt; Member, School of Mathematics April 8, 2013 he Weil height measures the “complexity” of an algebraic number. It vanishes precisely at 0 and at the roots of unity. Moreover, a finite field extension of the rationals contains no elements of arbitrari

From playlist Mathematics

Video thumbnail

Kazuya Kato, Height of motives

The height of a rational number a/b (a, b integers which are coprime) is defined as max(|a|, |b|). A rational number with small (resp. big) height is a simple (resp. complicated) number. Though the notion of height is so naive, height has played fundamental roles in number theory. There ar

From playlist Conférences Paris Pékin Tokyo

Video thumbnail

Abstract Algebra - 11.1 Fundamental Theorem of Finite Abelian Groups

We complete our study of Abstract Algebra in the topic of groups by studying the Fundamental Theorem of Finite Abelian Groups. This tells us that every finite abelian group is a direct product of cyclic groups of prime-power order. Video Chapters: Intro 0:00 Before the Fundamental Theorem

From playlist Abstract Algebra - Entire Course

Video thumbnail

Group homomorphisms and isomorphisms

Jacob talks about homomorphisms and isomorphisms of groups, which are functions that can help you tell a lot about the properties of groups.

From playlist Basics: Group Theory

Video thumbnail

Normal subgroups

Before we carry on with our coset journey, we need to discover when the left- and right cosets are equal to each other. The obvious situation is when our group is Abelian. The other situation is when the subgroup is a normal subgroup. In this video I show you what a normal subgroup is a

From playlist Abstract algebra

Video thumbnail

Lucia Mocz: A new Northcott property for Faltings height

Abstract: The Faltings height is a useful invariant for addressing questions in arithmetic geometry. In his celebrated proof of the Mordell and Shafarevich conjectures, Faltings shows the Faltings height satisfies a certain Northcott property, which allows him to deduce his finiteness stat

From playlist Algebraic and Complex Geometry

Video thumbnail

Introduction to elliptic curves and BSD Conjecture by Sujatha Ramadorai

12 December 2016 to 22 December 2016 VENUE Madhava Lecture Hall, ICTS Bangalore The Birch and Swinnerton-Dyer conjecture is a striking example of conjectures in number theory, specifically in arithmetic geometry, that has abundant numerical evidence but not a complete general solution. An

From playlist Theoretical and Computational Aspects of the Birch and Swinnerton-Dyer Conjecture

Video thumbnail

Rational points and fundamental groups. - Ellenberg - Workshop 2 - CEB T2 2019

Jordan Ellenberg (University of Wisconsin-Madison) / 25.06.2019 Rational points and fundamental groups. I will talk about some results old and new about the relationship between rational points on varieties and fundamental groups. In a paper with Hast, we extend the class of curves to w

From playlist 2019 - T2 - Reinventing rational points

Video thumbnail

David Corwin, Kim's conjecture and effective Faltings

VaNTAGe seminar, on Nov 24, 2020 License: CC-BY-NC-SA.

From playlist ICERM/AGNTC workshop updates

Video thumbnail

Moduli of p-divisible groups (Lecture 1) by Ehud De Shalit

PERFECTOID SPACES ORGANIZERS: Debargha Banerjee, Denis Benois, Chitrabhanu Chaudhuri, and Narasimha Kumar Cheraku DATE & TIME: 09 September 2019 to 20 September 2019 VENUE: Madhava Lecture Hall, ICTS, Bangalore Scientific committee: Jacques Tilouine (University of Paris, France) Eknath

From playlist Perfectoid Spaces 2019

Video thumbnail

John Tate: The arithmetic of elliptic curves

This lecture was held by Abel Laureate John Torrence Tate at The University of Oslo, May 26, 2010 and was part of the Abel Prize Lectures in connection with the Abel Prize Week celebrations.

From playlist Abel Lectures

Video thumbnail

Representation theory: Abelian groups

This lecture discusses the complex representations of finite abelian groups. We show that any group is iomorphic to its dual (the group of 1-dimensional representations, and isomorphic to its double dual in a canonical way (Pontryagin duality). We check the orthogonality relations for the

From playlist Representation theory

Video thumbnail

Bjorn Poonen: Heuristics for boundedness of ranks of elliptic curves

Abstract: We present heuristics that suggest that there is a uniform bound on the rank of E(ℚ) as E varies over all elliptic curves over ℚ. This is joint work with Jennifer Park, John Voight, and Melanie Matchett Wood. Recording during the thematic meeting : "Rational Points and Algebraic

From playlist Algebraic and Complex Geometry

Related pages

Ordinal number | Prime number | Elementary divisors | George Mackey | Natural number | Limit ordinal | Finite field | Mathematics | Transfinite induction | Vector space | Divisible group | Fundamental theorem of finitely generated abelian groups | Matrix (mathematics) | Prüfer theorems | Abelian group | Discrete valuation ring | Successor ordinal