Honeycombs (geometry)

120-cell honeycomb

In the geometry of hyperbolic 4-space, the 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,3}, it has three 120-cells around each face. Its dual is the order-5 5-cell honeycomb, {3,3,3,5}. (Wikipedia).

120-cell honeycomb
Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

Particle distribution in a honeycomb maze with rounded cells

This simulation shows the particle distribution in a honeycomb maze, which was introduced in the video https://youtu.be/a3ICP1wQyR8 . The walls of each hexagonal cell are part of a same circle which is inscribed in the hexagon. As we have seen in the previous video, particles can spend lon

From playlist Illumination problem

Video thumbnail

4. Honeycombs: In-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session includes a review of honeycombs, and explores the mechanical properties of honeycombs. License: Creative Commons BY-N

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Why do Bees build Hexagons? Honeycomb Conjecture explained by Thomas Hales

Mathematician Thomas Hales explains the Honeycomb Conjecture in the context of bees. Hales proved that the hexagon tiling (hexagonal honeycomb) is the most efficient way to maximise area whilst minimising perimeter. Interview with Oxford Mathematician Dr Tom Crawford. Produced by Tom Roc

From playlist Mathstars

Video thumbnail

Half of a 120-Cell

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/2A3R

From playlist 3D printing

Video thumbnail

David Hall - Recipe for a 'bola Honeycombs - G4G13 Apr 2018

Develop a honeycomb grid of integers which becomes the basis for a 3D parabolic polyheda.

From playlist G4G13 Videos

Video thumbnail

Sudoku Colorings of a 16-cell Pre-Fractal – Hideki Tsuiki

This is a joint work with Yasuyuki Tsukamoto. 16-cell is a 4-dimensional polytope with a lot of beautiful properties, in particular with respect to cubic projections of a fractal based on it. We define SUDOKU-like colorings of a 3D cubic lattice which is defined based on properties of a

From playlist G4G12 Videos

Video thumbnail

Michael Weinstein: Dispersive waves in novel 2d media; Honeycomb structures, Edge States ...

Abstract: We discuss the 2D Schrödinger equation for periodic potentials with the symmetry of a hexagonal tiling of the plane. We first review joint work with CL Fefferman on the existence of Dirac points, conical singularities in the band structure, and the resulting effective 2D Dirac dy

From playlist Partial Differential Equations

Video thumbnail

Inverse problem by Abhinav Kumar

DISCUSSION MEETING SPHERE PACKING ORGANIZERS: Mahesh Kakde and E.K. Narayanan DATE: 31 October 2019 to 06 November 2019 VENUE: Madhava Lecture Hall, ICTS Bangalore Sphere packing is a centuries-old problem in geometry, with many connections to other branches of mathematics (number the

From playlist Sphere Packing - 2019

Video thumbnail

Why Nature Loves Hexagons

Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/PBSDSDonate Follow me to Infinite Series for 4-Dimensional Bees! https://youtu.be/X8jOxEGVyPo Don’t miss our next video! SUBSCRIBE! ►► http://bit.ly/iotbs_sub ↓↓↓ More info an

From playlist Be Smart - LATEST EPISODES!

Video thumbnail

Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids by Simon Trebst

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Video thumbnail

Large deviations for random hives and the spectrum of the sum of two random.. by Hariharan Narayanan

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS: Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

Video thumbnail

The Mystery of the Fibonacci Cycle

A video about the mysterious pattern found in the final digits of Fibonacci numbers. It turns out, if you write out the full sequence of Fibonacci numbers, the pattern of final digits repeats every 60 numbers. What’s up with that? Watch this video and you’ll find out! (My apologies to any

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

Understanding spin-1 kagome antiferromagnet through Hida model by Brijesh Kumar

Program The 2nd Asia Pacific Workshop on Quantum Magnetism ORGANIZERS: Subhro Bhattacharjee, Gang Chen, Zenji Hiroi, Ying-Jer Kao, SungBin Lee, Arnab Sen and Nic Shannon DATE: 29 November 2018 to 07 December 2018 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Frustrated quantum magne

From playlist The 2nd Asia Pacific Workshop on Quantum Magnetism

Video thumbnail

3. Structure of Cellular Solids

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson The structure of cellular materials, honeycombs and modeling honeycombs are explored in this session. License: Creative Commons BY

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Michael Weinstein: Waves and microstructures

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Partial Differential Equations

Video thumbnail

30-Cell Puzzle

This shows a 3d print of a puzzle I produced using shapeways.com. This is joint work with Saul Schleimer. This is available at http://shpws.me/lmxi. A larger version of the puzzle is available at http://shpws.me/lmxi.

From playlist 3D printing

Video thumbnail

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Related pages

5-cube | 5-simplex | Order-4 120-cell honeycomb | Pentagon | Schläfli symbol | Dodecahedron | Tetrahedron | Tessellation | Honeycomb (geometry) | Regular polytope | Hyperbolic space | 5-cell | Coxeter group | Order-5 120-cell honeycomb | 120-cell | Order-5 5-cell honeycomb | Regular Polytopes (book) | Geometry | Triangle