Scheme theory | General topology | Algebraic varieties

Zariski topology

In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets of the variety. In the case of an algebraic variety over the complex numbers, the Zariski topology is thus coarser than the usual topology, as every algebraic set is closed for the usual topology. The generalization of the Zariski topology to the set of prime ideals of a commutative ring follows from Hilbert's Nullstellensatz, that establishes a bijective correspondence between the points of an affine variety defined over an algebraically closed field and the maximal ideals of the ring of its regular functions. This suggests defining the Zariski topology on the set of the maximal ideals of a commutative ring as the topology such that a set of maximal ideals is closed if and only if it is the set of all maximal ideals that contain a given ideal. Another basic idea of Grothendieck's scheme theory is to consider as points, not only the usual points corresponding to maximal ideals, but also all (irreducible) algebraic varieties, which correspond to prime ideals. Thus the Zariski topology on the set of prime ideals (spectrum) of a commutative ring is the topology such that a set of prime ideals is closed if and only if it is the set of all prime ideals that contain a fixed ideal. (Wikipedia).

Zariski topology
Video thumbnail

algebraic geometry 5 Affine space and the Zariski topology

This lecture is part of an online algebraic geometry course, based on chapter I of "Algebraic geometry" by Hartshorne. It covers the definition of affine space and its Zariski topology.

From playlist Algebraic geometry I: Varieties

Video thumbnail

Topology 1.7 : More Examples of Topologies

In this video, I introduce important examples of topologies I didn't get the chance to get to. This includes The discrete and trivial topologies, subspace topology, the lower-bound and K topologies on the reals, the dictionary order, and the line with two origins. I also introduce (again)

From playlist Topology

Video thumbnail

Topology (What is a Topology?)

What is a Topology? Here is an introduction to one of the main areas in mathematics - Topology. #topology Some of the links below are affiliate links. As an Amazon Associate I earn from qualifying purchases. If you purchase through these links, it won't cost you any additional cash, b

From playlist Topology

Video thumbnail

What is a closed set ?

I define closed sets, an important notion in topology and analysis. It is defined in terms of limit points, and has a priori nothing to do with open sets. Yet I show the important result that a set is closed if and only if its complement is open. More topology videos can be found on my pla

From playlist Topology

Video thumbnail

Folding the Klein Quartic

https://github.com/timhutton/klein-quartic

From playlist Geometry

Video thumbnail

Sequential Compactness

In this video, I discuss the notion of sequential compactness, which is an important concept used in topology and analogy. I also explain the similarities and differences between sequential compactness and covering compactness. Compactness: https://youtu.be/xiWizwjpt8o Bolzano-Weierstrass

From playlist Topology

Video thumbnail

Yohann Genzmer : The Zariski problem for homogeneous and quasi-homogeneous curves

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebraic and Complex Geometry

Video thumbnail

J. Bost - Techniques d’algébrisation... (Part 2)

Abstract - Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points commun

From playlist Ecole d'été 2019 - Foliations and algebraic geometry

Video thumbnail

Geometry of complex surface singularities and 3-manifolds - Neumann

Geometric Structures on 3-manifolds Topic: Geometry of complex surface singularities and 3-manifolds Speaker: Walter Neumann Date: Tuesday, January 26 I will talk about bilipschitz geometry of complex algebraic sets, focusing on the local geometry in dimension 2 (complex surface singulari

From playlist Mathematics

Video thumbnail

Definition of a Topological Space

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Definition of a Topological Space

From playlist Topology

Video thumbnail

Weil conjectures 6: etale cohomology of a curve

We give an overview of how to calculate the etale cohomology of a nonsinguar projective curve over an algebraically closed field with coefficients Z/nZ with n invertible. We simply assume a lot of properties of etale cohomology without proving (or even defining) them.

From playlist Algebraic geometry: extra topics

Video thumbnail

Holly Krieger, Equidistribution and unlikely intersections in arithmetic dynamics

VaNTAGe seminar on May 26, 2020. License: CC-BY-NC-SA. Closed captions provided by Marley Young.

From playlist Arithmetic dynamics

Video thumbnail

Topological Spaces: The Subspace Topology

Today, we discuss the subspace topology, which is a useful tool to construct new topologies.

From playlist Topology & Manifolds

Video thumbnail

Set Theory (Part 2): ZFC Axioms

Please feel free to leave comments/questions on the video and practice problems below! In this video, I introduce some common axioms in set theory using the Zermelo-Fraenkel w/ choice (ZFC) system. Five out of nine ZFC axioms are covered and the remaining four will be introduced in their

From playlist Set Theory by Mathoma

Video thumbnail

Weil conjectures 5: Lefschetz trace formula

This talk explains the relation between the Lefschetz fixed point formula and the Weil conjectures. More precisely, the zeta function of a variety of a finite field can be written in terms of an action of the Frobenius group on the cohomology groups of the variety. The main problem is then

From playlist Algebraic geometry: extra topics

Video thumbnail

Weil conjectures 7: What is an etale morphism?

This talk explains what etale morphisms are in algebraic geometry. We first review etale morphisms in the usual topology of complex manifolds, where they are just local homeomorphism, and explain why this does not work in algebraic geometry. We give a provisional definition of etale morphi

From playlist Algebraic geometry: extra topics

Video thumbnail

Nonlinear algebra, Lecture 2: "Algebraic Varieties", by Mateusz Michałek

This is the second lecture in the IMPRS Ringvorlesung, the advanced graduate course at the Max Planck Institute for Mathematics in the Sciences. In this lecture, Mateusz Michalek describes the main characters in algebraic geometry: algebraic varieties.

From playlist IMPRS Ringvorlesung - Introduction to Nonlinear Algebra

Video thumbnail

Sites/Coverings Examples part 1

We give the baby examples of sites in our new language.

From playlist Sites, Coverings and Grothendieck Topologies

Video thumbnail

Compactness

The single, most important concept in topology and analysis: Compactness. This is explained via covers, which I'll define as well. There are tons of applications of this concept, which you can find in the playlist below Topology Playlist: https://youtube.com/playlist?list=PLJb1qAQIrmmA13v

From playlist Topology

Related pages

Field of fractions | Algebraic Geometry (book) | Prime ideal | Proj construction | Topological space | Spectral space | Algebraically closed field | Complex analysis | Minimal prime ideal | Krull dimension | Ideal (ring theory) | Maximal ideal | Topology | Algebraic variety | T1 space | Homogeneous polynomial | Base (topology) | Commutative algebra | Projective space | Hilbert's Nullstellensatz | Noetherian topological space | Principal ideal domain | Polynomial ring | Algebraic set | Hausdorff space | Discriminant | Affine variety | Real analysis | Connected space | Hilbert's basis theorem | Proper morphism | Field (mathematics) | Integer | Generic point | Real number | Algebraic geometry | Noetherian ring | Prime element | Krull's principal ideal theorem | Residue field | Compact space | Manifold | Prime number | Irreducible polynomial | Scheme (mathematics) | Affine space | Complex number | Subspace topology | Spectrum of a ring | Closed set | Oscar Zariski | Commutative ring