Truncated tilings

Truncated cubic-octahedral honeycomb

No description. (Wikipedia).

Video thumbnail

How to construct an Octahedron

How the greeks constructed the 2nd platonic solid: the regular octahedron Source: Euclids Elements Book 13, Proposition 14. In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. The term is most commonly used to refer to the regular octahedron, a Plat

From playlist Platonic Solids

Video thumbnail

Octahedron Fractal Graph

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/19O1

From playlist 3D printing

Video thumbnail

Regular polyhedra

This shows a 3d print of a mathematical sculpture I produced using shapeways.com. This model is available at http://shpws.me/q0PF.

From playlist 3D printing

Video thumbnail

Canonical structures inside Platonic solids II | Universal Hyperbolic Geometry 50 | NJ Wildberger

The cube and the octahedron are dual solids. Each has contained within it both 2-fold, 3-fold and 4-fold symmetry. In this video we look at how these symmetries are generated in the cube via canonical structures. Along the way we discuss bipartite graphs. This gives us more insight into t

From playlist Universal Hyperbolic Geometry

Video thumbnail

How to Construct a Dodecahedron

How the greeks constructed the Dodecahedron. Euclids Elements Book 13, Proposition 17. In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. A regular dode

From playlist Platonic Solids

Video thumbnail

Unified Theory of the Spiral Spin-liquids on Layered Honeycomb, Diamond... by Karlo Penc

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Video thumbnail

Tailoring Topological Phases: A Materials Perspective by Tanusri Saha-Dasgupta

DISCUSSION MEETING NOVEL PHASES OF QUANTUM MATTER ORGANIZERS: Adhip Agarwala, Sumilan Banerjee, Subhro Bhattacharjee, Abhishodh Prakash and Smitha Vishveshwara DATE: 23 December 2019 to 02 January 2020 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Recent theoretical and experimental

From playlist Novel Phases of Quantum Matter 2019

Video thumbnail

How to use a perfect square trinomial to solve a quadratic equation

👉Learn how to solve a quadratic equation by factoring a perfect square trinomial. A perfect square trinomial quadratic equation is of the form y = x^2 +2cx + c^2, where c is a perfet square. There are couple of ways we can solve a factored perfect square trinomial. We can apply the zero p

From playlist Solve Quadratic Equations by Factoring

Video thumbnail

Solving a Cubic Equation Using a Triangle

There is this surprising fact about cubic equations with 3 real solutions where an equilateral triangle centered on the inflection point can always be scaled/rotated by some amount such that its vertices will line up with the roots of the equation. But is there any way that this can be us

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

How to construct a Tetrahedron

How the greeks constructed the first platonic solid: the regular tetrahedron. Source: Euclids Elements Book 13, Proposition 13. In geometry, a tetrahedron also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. Th

From playlist Platonic Solids

Video thumbnail

Find the solutions to a quadratic equation of a perfect square trinomial

👉Learn how to solve a quadratic equation by factoring a perfect square trinomial. A perfect square trinomial quadratic equation is of the form y = x^2 +2cx + c^2, where c is a perfet square. There are couple of ways we can solve a factored perfect square trinomial. We can apply the zero p

From playlist Solve Quadratic Equations by Factoring

Video thumbnail

Role of Magnetoelastic Coupling in Kitaev Materials by Roser Valenti

PROGRAM FRUSTRATED METALS AND INSULATORS (HYBRID) ORGANIZERS: Federico Becca (University of Trieste, Italy), Subhro Bhattacharjee (ICTS-TIFR, India), Yasir Iqbal (IIT Madras, India), Bella Lake (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany), Yogesh Singh (IISER Mohali, In

From playlist FRUSTRATED METALS AND INSULATORS (HYBRID, 2022)

Video thumbnail

Platonic and Archimedean solids

Platonic solids: http://shpws.me/qPNS Archimedean solids: http://shpws.me/qPNV

From playlist 3D printing

Video thumbnail

Microscopic Modeling and Applications of Frustrated Magnetism by SungBin Lee

Program The 2nd Asia Pacific Workshop on Quantum Magnetism ORGANIZERS: Subhro Bhattacharjee, Gang Chen, Zenji Hiroi, Ying-Jer Kao, SungBin Lee, Arnab Sen and Nic Shannon DATE: 29 November 2018 to 07 December 2018 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Frustrated quantum magne

From playlist The 2nd Asia Pacific Workshop on Quantum Magnetism

Video thumbnail

SU(4) Dirac Fermions on Honeycomb Lattice by Basudeb Mondal

DISCUSSION MEETING : APS SATELLITE MEETING AT ICTS ORGANIZERS : Ranjini Bandyopadhyay (RRI, India), Subhro Bhattacharjee (ICTS-TIFR, India), Arindam Ghosh (IISc, India), Shobhana Narasimhan (JNCASR, India) and Sumantra Sarkar (IISc, India) DATE & TIME: 15 March 2022 to 18 March 2022 VEN

From playlist APS Satellite Meeting at ICTS-2022

Video thumbnail

An Introduction to Tensor Renormalization Group by Daisuke Kadoh

PROGRAM NONPERTURBATIVE AND NUMERICAL APPROACHES TO QUANTUM GRAVITY, STRING THEORY AND HOLOGRAPHY (HYBRID) ORGANIZERS: David Berenstein (University of California, Santa Barbara, USA), Simon Catterall (Syracuse University, USA), Masanori Hanada (University of Surrey, UK), Anosh Joseph (II

From playlist NUMSTRING 2022

Video thumbnail

Mod-02 Lec-04 Crystal Structure (Contd.)

Advanced ceramics for strategic applications by Prof. H.S. Maiti,Department of Metallurgy and Material Science,IIT Kharagpur.For more details on NPTEL visit http://nptel.ac.in

From playlist IIT Kharagpur: Advanced Ceramics for Strategic Applications | CosmoLearning.org Materials Science

Video thumbnail

Crystalline vs Amorphous materials

Materials are either crystalline or amorphous. They contain long-range periodic order or they do not. This leads to very different properties! Crystalline materials can be either polycrystalline or single crystal in nature. we can see evidence of single crystals in faceting of crystal face

From playlist Materials Sciences 101 - Introduction to Materials Science & Engineering 2020

Video thumbnail

Mod-02 Lec-03 Crystal Structure

Advanced ceramics for strategic applications by Prof. H.S. Maiti,Department of Metallurgy and Material Science,IIT Kharagpur.For more details on NPTEL visit http://nptel.ac.in

From playlist IIT Kharagpur: Advanced Ceramics for Strategic Applications | CosmoLearning.org Materials Science

Video thumbnail

How to solve by factoring using a perfect square trinomial

👉Learn how to solve a quadratic equation by factoring a perfect square trinomial. A perfect square trinomial quadratic equation is of the form y = x^2 +2cx + c^2, where c is a perfet square. There are couple of ways we can solve a factored perfect square trinomial. We can apply the zero p

From playlist Solve Quadratic Equations by Factoring

Related pages

Cubic-octahedral honeycomb