Symplectic geometry

Symplectic vector field

In physics and mathematics, a symplectic vector field is one whose flow preserves a symplectic form. That is, if is a symplectic manifold with smooth manifold and symplectic form , then a vector field in the Lie algebra is symplectic if its flow preserves the symplectic structure. In other words, the Lie derivative of the vector field must vanish: . An alternative definition is that a vector field is symplectic if its interior product with the symplectic form is closed. (The interior product gives a map from vector fields to 1-forms, which is an isomorphism due to the nondegeneracy of a symplectic 2-form.) The equivalence of the definitions follows from the closedness of the symplectic form and Cartan's magic formula for the Lie derivative in terms of the exterior derivative. If the interior product of a vector field with the symplectic form is an exact form (and in particular, a closed form), then it is called a Hamiltonian vector field. If the first De Rham cohomology group of the manifold is trivial, all closed forms are exact, so all symplectic vector fields are Hamiltonian. That is, the obstruction to a symplectic vector field being Hamiltonian lives in . In particular, symplectic vector fields on simply connected manifolds are Hamiltonian. The Lie bracket of two symplectic vector fields is Hamiltonian, and thus the collection of symplectic vector fields and the collection of Hamiltonian vector fields both form Lie algebras. (Wikipedia).

Video thumbnail

Introduction to Vector Fields

Introduction to Vector Fields This video discusses, 1) The definition of a vector field. 2) Examples of vector fields including the gradient, and various velocity fields. 3) The definition of a conservative vector field. 4) The definition of a potential function. 5) Test for conservative

From playlist Calculus 3

Video thumbnail

Lie derivatives of differential forms

Introduces the lie derivative, and its action on differential forms. This is applied to symplectic geometry, with proof that the lie derivative of the symplectic form along a Hamiltonian vector field is zero. This is really an application of the wonderfully named "Cartan's magic formula"

From playlist Symplectic geometry and mechanics

Video thumbnail

Worldwide Calculus: Vector Fields

Lecture on 'Vector Fields' from 'Worldwide Multivariable Calculus'. For more lecture videos and $10 digital textbooks, visit www.centerofmath.org.

From playlist Integration and Vector Fields

Video thumbnail

Multivariable Calculus | What is a vector field.

We introduce the notion of a vector field and give some graphical examples. We also define a conservative vector field with examples. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Multivariable Calculus

Video thumbnail

What is a Vector Space?

This video explains the definition of a vector space and provides examples of vector spaces.

From playlist Vector Spaces

Video thumbnail

Introduction to Vector Fields

http://mathispower4u.yolasite.com/

From playlist Line Integrals

Video thumbnail

11_7_1 Potential Function of a Vector Field Part 1

The gradient of a function is a vector. n-Dimensional space can be filled up with countless vectors as values as inserted into a gradient function. This is then referred to as a vector field. Some vector fields have potential functions. In this video we start to look at how to calculat

From playlist Advanced Calculus / Multivariable Calculus

Video thumbnail

Sketch constant vector field

Free ebook http://tinyurl.com/EngMathYT Basic example of how to sketch a constant vector field.

From playlist Engineering Mathematics

Video thumbnail

Intro to vector fields

Free ebook http://tinyurl.com/EngMathYT A basic introduction to vector fields discussing the need for vector fields and some of the basic mathematics associated with them.

From playlist Engineering Mathematics

Video thumbnail

Brent Pym: Holomorphic Poisson structures - lecture 2

The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a cano

From playlist Virtual Conference

Video thumbnail

Symplectic Dynamics of Integrable Hamiltonian Systems - Alvaro Pelayo

Alvaro Pelayo Member, School of Mathematics April 4, 2011 I will start with a review the basic notions of Hamiltonian/symplectic vector field and of Hamiltonian/symplectic group action, and the classical structure theorems of Kostant, Atiyah, Guillemin-Sternberg and Delzant on Hamiltonian

From playlist Mathematics

Video thumbnail

Equivariant structures in mirror symmetry - James Pascaleff

James Pascaleff University of Illinois at Urbana-Champaign October 17, 2014 When a variety XX is equipped with the action of an algebraic group GG, it is natural to study the GG-equivariant vector bundles or coherent sheaves on XX. When XX furthermore has a mirror partner YY, one can ask

From playlist Mathematics

Video thumbnail

Erlend Fornæss Wold: Symplectic Carleman approximation on co-adjoint orbits

For a complex Lie group $G$ with a real form $G_{0}\subset G$, we prove that any Hamiltionian automorphism $\phi$ of a coadjoint orbit $\mathcal{O}_{0}$ of $G_{0}$ whose connected components are simply connected, may be approximated by holomorphic $O_{0}$-invariant symplectic automorphism

From playlist Analysis and its Applications

Video thumbnail

Brent Pym: Holomorphic Poisson structures - lecture 3

The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a cano

From playlist Virtual Conference

Video thumbnail

Alberto Cattaneo: An introduction to the BV-BFV Formalism

Abstract: The BV-BFV formalism unifies the BV formalism (which deals with the problem of fixing the gauge of field theories on closed manifolds) with the BFV formalism (which yields a cohomological resolution of the reduced phase space of a classical field theory). I will explain how this

From playlist Topology

Video thumbnail

How to Find Periodic Orbits and Exotic Symplectic Manifolds - Mark McLean

Mark McLean Massachusetts Institute of Technology; Member, School of Mathematics October 15, 2012 I will give an introduction to symplectic geometry and Hamiltonian systems and then introduce an invariant called symplectic cohomology. This has many applications in symplectic geometry and

From playlist Mathematics

Video thumbnail

David Mond: The intersection form, logarithmic vector fields, and the Severi strata..

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebraic and Complex Geometry

Video thumbnail

Pavel Etingof - "D-modules on Poisson varieties and Poisson traces"

Pavel Etingof delivers a research talk on "D-modules on Poisson varieties and Poisson traces" at the Worldwide Center of Mathematics

From playlist Center of Math Research: the Worldwide Lecture Seminar Series

Video thumbnail

Act globally, compute...points and localization - Tara Holm

Tara Holm Cornell University; von Neumann Fellow, School of Mathematics October 20, 2014 Localization is a topological technique that allows us to make global equivariant computations in terms of local data at the fixed points. For example, we may compute a global integral by summing inte

From playlist Mathematics

Video thumbnail

MATH2018 Lecture 3.2 Vector Fields

We discuss the concept of a vector field and introduce some basic tools for understanding them: divergence and curl.

From playlist MATH2018 Engineering Mathematics 2D

Related pages

De Rham cohomology | Exterior derivative | Flow (mathematics) | Mathematics | Obstruction theory | Lie derivative | Symplectic manifold | Lie bracket of vector fields | Hamiltonian vector field | Lie algebra | Vector field | Isomorphism