Orthogonal polynomials

Sieved Jacobi polynomials

In mathematics, sieved Jacobi polynomials are a family of sieved orthogonal polynomials, introduced by . Their recurrence relations are a modified (or "sieved") version of the recurrence relations for Jacobi polynomials. (Wikipedia).

Video thumbnail

Distributive Property

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

How do we multiply polynomials

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

Why does the distributive property Where does it come from

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

Multiplying Polynomials - Math Tutorial

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

How To Multiply Using Foil - Math Tutorial

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

Multiplying Using the Difference of Two Squares - Math Tutorial

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

Multiplying the Difference of Two Squares - Math Tutorial

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

The Large Sieve (Lecture 2) by Satadal Ganguly

Program Workshop on Additive Combinatorics ORGANIZERS: S. D. Adhikari and D. S. Ramana DATE: 24 February 2020 to 06 March 2020 VENUE: Madhava Lecture Hall, ICTS Bangalore Additive combinatorics is an active branch of mathematics that interfaces with combinatorics, number theory, ergod

From playlist Workshop on Additive Combinatorics 2020

Video thumbnail

Generic uniqueness of expanders with vanishing relative entropy - Felix Schulze

Workshop on Mean Curvature and Regularity Topic: Generic uniqueness of expanders with vanishing relative entropy Speaker: Felix Schulze Affiliation: University College London Date: November 8, 2018 For more video please visit http://video.ias.edu

From playlist Workshop on Mean Curvature and Regularity

Video thumbnail

How to Multiply Polynomials Using the Foil Face - Math Tutorial

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

How to Use the Distributive Property to Multiply Binomials - Polynomials

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply Polynomials

Video thumbnail

Advice Maths Research | The Jacobi polynumber maxel challenge! | Wild Egg Maths

We introduce the Jacobi polynomials which are extensions, in some sense, of the Gegenbauer polynomials and play a major role in representation theory. In this talk we outline explorations that you can make, following the two-dimensional maxel approach to number theory and orthogonal polyno

From playlist Maxel inverses and orthogonal polynomials (non-Members)

Video thumbnail

A Family of Rationally Extended Real and PT Symmetric Complex Potentials by Rajesh Kumar Yadav

PROGRAM NON-HERMITIAN PHYSICS (ONLINE) ORGANIZERS: Manas Kulkarni (ICTS, India) and Bhabani Prasad Mandal (Banaras Hindu University, India) DATE: 22 March 2021 to 26 March 2021 VENUE: Online Non-Hermitian Systems / Open Quantum Systems are not only of fundamental interest in physics a

From playlist Non-Hermitian Physics (ONLINE)

Video thumbnail

Sarah Post: Rational extensions of superintegrable systems, exceptional polynomials & Painleve eq.s

Abstract: In this talk, I will discuss recent work with Ian Marquette and Lisa Ritter on superintegable extensions of a Smorodinsky Winternitz potential associated with exception orthogonal polynomials (EOPs). EOPs are families of orthogonal polynomials that generalize the classical ones b

From playlist Integrable Systems 9th Workshop

Video thumbnail

A class of exactly solvable extended potentials associated by Rajesh Kumar Yadav

Non-Hermitian Physics - PHHQP XVIII DATE: 04 June 2018 to 13 June 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore Non-Hermitian Physics-"Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) XVIII" is the 18th meeting in the series that is being held over the years in Quantum Phys

From playlist Non-Hermitian Physics - PHHQP XVIII

Video thumbnail

Serre’s problem for diagonal conics - Sofos - Workshop 1 - CEB T2 2019

Efthymios Sofos (Max Planck Institute for Mathematics, Bonn) / 22.05.2019 Serre’s problem for diagonal conics Assume that B is a large real number and let c1, c2, c3 be three randomly chosen integers in the box [−B,B]3. Consider the probability that the “random” curve c1X2 +c2Y2 +c3Z2 =

From playlist 2019 - T2 - Reinventing rational points

Video thumbnail

Martin Gander: On the invention of iterative methods for linear systems

HYBRID EVENT Recorded during the meeting "1Numerical Methods and Scientific Computing" the November 9, 2021 by the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent Find this video and other talks given by worldwide mathematicians on

From playlist Numerical Analysis and Scientific Computing

Video thumbnail

Using the Box Method to Multiply a Trinomial by a Trinomial - Math Tutorial

👉 Learn how to multiply polynomials. To multiply polynomials, we use the distributive property. The distributive property is essential for multiplying polynomials. The distributive property is the use of each term of one of the polynomials to multiply all the terms of the other polynomial.

From playlist How to Multiply a Trinomial by a Trinomial

Video thumbnail

Maria Charina: Algebraic multigrid and subdivision

Abstract: Multigrid is an iterative method for solving large linear systems of equations whose Toeplitz system matrix is positive definite. One of the crucial steps of any Multigrid method is based on multivariate subdivision. We derive sufficient conditions for convergence and optimality

From playlist Numerical Analysis and Scientific Computing

Related pages

Sieved orthogonal polynomials | Jacobi polynomials | Recurrence relation