Orthogonal polynomials

Q-Konhauser polynomials

In mathematics, the q-Konhauser polynomials are a q-analog of the Konhauser polynomials, introduced by . (Wikipedia).

Video thumbnail

Raimar WULKENHAAR - Solvable Dyson-Schwinger Equations

Dyson-Schwinger equations provide one of the most powerful non-perturbative approaches to quantum field theories. The quartic analogue of the Kontsevich model is a toy model for QFT in which the tower of Dyson-Schwinger equations splits into one non-linear equation for the planar two-point

From playlist Talks of Mathematics Münster's reseachers

Video thumbnail

Irreducibility and the Schoenemann-Eisenstein criterion | Famous Math Probs 20b | N J Wildberger

In the context of defining and computing the cyclotomic polynumbers (or polynomials), we consider irreducibility. Gauss's lemma connects irreducibility over the integers to irreducibility over the rational numbers. Then we describe T. Schoenemann's irreducibility criterion, which uses some

From playlist Famous Math Problems

Video thumbnail

Maxim Kazarian - 1/3 Mathematical Physics of Hurwitz numbers

Hurwitz numbers enumerate ramified coverings of a sphere. Equivalently, they can be expressed in terms of combinatorics of the symmetric group; they enumerate factorizations of permutations as products of transpositions. It turns out that these numbers obey a huge num

From playlist ­­­­Physique mathématique des nombres de Hurwitz pour débutants

Video thumbnail

Maxim Kazarian - 2/3 Mathematical Physics of Hurwitz numbers

Hurwitz numbers enumerate ramified coverings of a sphere. Equivalently, they can be expressed in terms of combinatorics of the symmetric group; they enumerate factorizations of permutations as products of transpositions. It turns out that these numbers obey a huge num

From playlist ­­­­Physique mathématique des nombres de Hurwitz pour débutants

Video thumbnail

Physics - Ch 66 Ch 4 Quantum Mechanics: Schrodinger Eqn (4 of 92) The Schrodinger Eqn. "Derived"

Visit http://ilectureonline.com for more math and science lectures! In this video I will “derive” the Schrodinger equation using y(x,y)=Acos(kx-wt). Next video in this series can be seen at: https://youtu.be/GyKk2-0JZ48

From playlist PHYSICS 66.1 QUANTUM MECHANICS - SCHRODINGER EQUATION

Video thumbnail

Maxim Kazarian - 3/3 Mathematical Physics of Hurwitz numbers

Hurwitz numbers enumerate ramified coverings of a sphere. Equivalently, they can be expressed in terms of combinatorics of the symmetric group; they enumerate factorizations of permutations as products of transpositions. It turns out that these numbers obey a huge num

From playlist ­­­­Physique mathématique des nombres de Hurwitz pour débutants

Video thumbnail

Quaternions EXPLAINED Briefly

This is a video I have been wanting to make for some time, in which I discuss what the quaternions are, as mathematical objects, and how we do calculations with them. In particular, we will see how the fundamental equation of the quaternions i^2=j^2=k^2=ijk=-1 easily generates the rule for

From playlist Quaternions

Video thumbnail

How to find the position function given the acceleration function

👉 Learn how to approximate the integral of a function using the Reimann sum approximation. Reimann sum is an approximation of the area under a curve or between two curves by dividing it into multiple simple shapes like rectangles and trapezoids. In using the Reimann sum to approximate the

From playlist Riemann Sum Approximation

Video thumbnail

Secret of row 10: a new visual key to ancient Pascalian puzzles

NEW (Christmas 2019). Two ways to support Mathologer Mathologer Patreon: https://www.patreon.com/mathologer Mathologer PayPal: paypal.me/mathologer (see the Patreon page for details) Today's video is about a recent chance discovery (2002) that provides a new beautiful visual key to some

From playlist Recent videos

Video thumbnail

Ch4 Pr4: Taylor Polynomial of a polynomial

The Taylor Polynomial to a function about x=a is a polynomial expressed in powers of (x-a). This example is from Chapter 4 Problem 4a,b in the MATH1231/1241 Calculus notes. Presented by Dr Daniel Mansfield from the UNSW School of Mathematics and Statistics.

From playlist Mathematics 1B (Calculus)

Video thumbnail

Visual Group Theory, Lecture 6.3: Polynomials and irreducibility

Visual Group Theory, Lecture 6.3: Polynomials and irreducibility A complex number is algebraic over Q (the rationals) if it is the root of a polynomial with rational coefficients. It is clear that every number that can be written with arithmetic and radicals is rational. Galois' big achie

From playlist Visual Group Theory

Video thumbnail

Visual Group Theory, Lecture 6.5: Galois group actions and normal field extensions

Visual Group Theory, Lecture 6.5: Galois group actions and normal field extensions If f(x) has a root in an extension field F of Q, then any automorphism of F permutes the roots of f(x). This means that there is a group action of Gal(f(x)) on the roots of f(x), and this action has only on

From playlist Visual Group Theory

Video thumbnail

The Minimal Polynomial

Proof of the existence of the minimal polynomial. Every polynomial that annihilates an operator is a polynomial multiple of the minimal polynomial of the operator. The eigenvalues of an operator are precisely the zeros of the minimal polynomial of the operator.

From playlist Linear Algebra Done Right

Video thumbnail

A central limit theorem for Gaussian polynomials... pt1 -Anindya De

Anindya De Institute for Advanced Study; Member, School of Mathematics May 13, 2014 A central limit theorem for Gaussian polynomials and deterministic approximate counting for polynomial threshold functions In this talk, we will continue, the proof of the Central Limit theorem from my las

From playlist Mathematics

Video thumbnail

What is Special About Polynomials? (Perspectives from Coding theory and DiffGeom) - Larry Guth

What is Special About Polynomials? (Perspectives from Coding theory and Differential Geometry) Larry Guth Massachusetts Institute of Technology March 13, 2013 olynomials are a special class of functions. They are useful in many branches of mathematics, often in problems which don't mention

From playlist Mathematics

Video thumbnail

The Bernstein Sato polynomial: Introduction

This is the first of three talks about the Bernstein-Sato polynomial. The second talk should appear at https://youtu.be/FAKzbvDm-w0 on Dec 22 5:00am PST We define the Bernstein-Sato polynomial of a polynomial in several complex variables, and show how it can be used to analytically con

From playlist Commutative algebra

Video thumbnail

Visual Group Theory, Lecture 6.4: Galois groups

Visual Group Theory, Lecture 6.4: Galois groups The Galois group Gal(f(x)) of a polynomial f(x) is the automorphism group of its splitting field. The degree of a chain of field extensions satisfies a "tower law", analogous to the tower law for the index of a chain of subgroups. This hints

From playlist Visual Group Theory

Video thumbnail

New Locally Decodable Codes from Lifting - Madhu Sudan

Madhu Sudan Microsoft Research March 25, 2013 Locally decodable codes (LDCs) are error-correcting codes that allow for highly-efficient recovery of "pieces" of information even after arbitrary corruption of a codeword. Locally testable codes (LTCs) are those that allow for highly-efficient

From playlist Mathematics

Video thumbnail

Valentin Blomer: The polynomial method for point counting and exponential sums, Lecture 1

We show how families of auxiliary polynomials can be used to count the number of points on certain types of curves over finite fields and to estimate exponential sums and character sums.

From playlist Harmonic Analysis and Analytic Number Theory

Video thumbnail

Euler's Formula for the Quaternions

In this video, we will derive Euler's formula using a quaternion power, instead of a complex power, which will allow us to calculate quaternion exponentials such as e^(i+j+k). If you like quaternions, this is a pretty neat formula and a simple generalization of Euler's formula for complex

From playlist Math

Related pages

Konhauser polynomials | Q-analog