Theorems in functional analysis | Theorems in harmonic analysis | Theorems in Fourier analysis

Plancherel theorem

In mathematics, the Plancherel theorem (sometimes called the Parseval–Plancherel identity) is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then A more precise formulation is that if a function is in both Lp spaces and , then its Fourier transform is in , and the Fourier transform map is an isometry with respect to the L2 norm. This implies that the Fourier transform map restricted to has a unique extension to a linear isometric map , sometimes called the Plancherel transform. This isometry is actually a unitary map. In effect, this makes it possible to speak of Fourier transforms of quadratically integrable functions. Plancherel's theorem remains valid as stated on n-dimensional Euclidean space . The theorem also holds more generally in locally compact abelian groups. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of non-commutative harmonic analysis. The unitarity of the Fourier transform is often called Parseval's theorem in science and engineering fields, based on an earlier (but less general) result that was used to prove the unitarity of the Fourier series. Due to the polarization identity, one can also apply Plancherel's theorem to the inner product of two functions. That is, if and are two functions, and denotes the Plancherel transform, then and if and are furthermore functions, then and so (Wikipedia).

Video thumbnail

The Plancherel formula for L^2(GL_n(F)\GL_n(E)) and applications… - Raphael Beuzart-Plessis

Workshop on Representation Theory and Analysis on Locally Symmetric Spaces Topic: The Plancherel formula for L^2(GL_n(F)\GL_n(E)) and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups Speaker: Raphael Beuzart-Plessis Affiliation: CNRS Date: March 6, 2018 Fo

From playlist Mathematics

Video thumbnail

Yiannis Sakellaridis: Plancherel formula, intersection complexes, and local L-functions

In the theory of automorphic forms, L-functions (and their special values) are usually realized by various types of period integrals. It is now understood that the local L-factors associated to a period represent a Plancherel density for a homogeneous space. I will start by reviewing the c

From playlist Seminar Series "Arithmetic Applications of Fourier Analysis"

Video thumbnail

C73 Introducing the theorem of Frobenius

The theorem of Frobenius allows us to calculate a solution around a regular singular point.

From playlist Differential Equations

Video thumbnail

Proof of Lemma and Lagrange's Theorem

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Proof of Lemma and Lagrange's Theorem. This video starts by proving that any two right cosets have the same cardinality. Then we prove Lagrange's Theorem which says that if H is a subgroup of a finite group G then the order of H div

From playlist Abstract Algebra

Video thumbnail

Alexander Bufetov: Determinantal point processes - Lecture 1

Abstract: Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 year

From playlist Probability and Statistics

Video thumbnail

C35 The Cauchy Euler Equation

I continue the look at higher-order, linear, ordinary differential equations. This time, though, they have variable coefficients and of a very special kind.

From playlist Differential Equations

Video thumbnail

A beautiful combinatorical proof of the Brouwer Fixed Point Theorem - Via Sperner's Lemma

Using a simple combinatorical argument, we can prove an important theorem in topology without any sophisticated machinery. Brouwer's Fixed Point Theorem: Every continuous mapping f(p) from between closed balls of the same dimension have a fixed point where f(p)=p. Sperner's Lemma: Ever

From playlist Cool Math Series

Video thumbnail

Lec 9 | MIT 6.450 Principles of Digital Communications I, Fall 2006

Lecture 9: Discrete-time fourier transforms and sampling theorem View the complete course at: http://ocw.mit.edu/6-450F06 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 6.450 Principles of Digital Communications, I Fall 2006

Video thumbnail

Integral Transforms - Lecture 9: The Fourier Transform in Action. Oxford Maths 2nd Year Lecture

This short course from Sam Howison, all 9 lectures of which we are making available (this is lecture 9), introduces two vital ideas. First, we look at distributions (or generalised functions) and in particular the mathematical representation of a 'point mass' as the Dirac delta function.

From playlist Oxford Mathematics Student Lectures - Integral Transforms

Video thumbnail

Asymptotic invariants of locally symmetric spaces – Tsachik Gelander – ICM2018

Lie Theory and Generalizations Invited Lecture 7.4 Asymptotic invariants of locally symmetric spaces Tsachik Gelander Abstract: The complexity of a locally symmetric space M is controlled by its volume. This phenomena can be measured by studying the growth of topological, geometric, alge

From playlist Lie Theory and Generalizations

Video thumbnail

Ptolemy's theorem and generalizations | Rational Geometry Math Foundations 131 | NJ Wildberger

The other famous classical theorem about cyclic quadrilaterals is due to the great Greek astronomer and mathematician, Claudius Ptolemy. Adopting a rational point of view, we need to rethink this theorem to state it in a purely algebraic way, without resort to `distances' and the correspon

From playlist Math Foundations

Video thumbnail

Lagrange theorem

We finally get to Lagrange's theorem for finite groups. If this is the first video you see, rather start at https://www.youtube.com/watch?v=F7OgJi6o9po&t=6s In this video I show you how the set that makes up a group can be partitioned by a subgroup and its cosets. I also take a look at

From playlist Abstract algebra

Video thumbnail

The Green - Tao Theorem (Lecture 3) by D. S. Ramana

Program Workshop on Additive Combinatorics ORGANIZERS: S. D. Adhikari and D. S. Ramana DATE: 24 February 2020 to 06 March 2020 VENUE: Madhava Lecture Hall, ICTS Bangalore Additive combinatorics is an active branch of mathematics that interfaces with combinatorics, number theory, ergod

From playlist Workshop on Additive Combinatorics 2020

Video thumbnail

Parseval-Plancherel Identity | Normalization in Quantum Mechanics

In this video, we will investigate the Parseval-Plancherel identity, which is named after the French mathematician Marc-Antoine Parseval, and the Swiss mathematician Michel Plancherel. It states that the integral over the absolute square of a function does not change after a Fourier transf

From playlist Quantum Mechanics, Quantum Field Theory

Video thumbnail

Cauchy-Riemann Equations: Proving a Function is Nowhere Differentiable 1

Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys Using the Cauchy-Riemann Equations to prove that the function f(z) = conjugate(z) is nowhere differentiable. This is a straightforward application of the C.R. equations.

From playlist Complex Analysis

Video thumbnail

Jérémie Bouttier : Autour de la mesure de Plancherel sur les partitions d'entiers - Partie 1

Résumé : Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers. La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée

From playlist Probability and Statistics

Video thumbnail

A09 The Hamiltonian

Moving on from Lagrange's equation, I show you how to derive Hamilton's equation.

From playlist Physics ONE

Video thumbnail

Functional Analysis Lecture 07 2014 02 11 Riesz Interpolation Theorem, Part 2

Proof of theorem in case of general L^p functions. Using Riesz interpolation to extend Fourier transform. Rapidly decreasing functions; Schwartz class functions. Fourier transform of a Schwartz class function. Properties of Fourier transform (interaction with basic operations); Fourie

From playlist Course 9: Basic Functional and Harmonic Analysis

Related pages

Locally compact abelian group | Unitary transformation | Fourier transform | Mathematics | Lp space | Plancherel theorem for spherical functions | Unitary operator | Euclidean space | Fourier series | Harmonic analysis | Polarization identity | Parseval's theorem