Order-n-3 3-honeycombs | Regular 3-honeycombs | Order-7-n 3-honeycombs | Isochoric 3-honeycombs | Isogonal 3-honeycombs

Order-7-3 square honeycomb

No description. (Wikipedia).

Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

Ex 3: Multiply Complex Numbers

This video provides examples of how to multiply and square complex numbers. Library: http://mathispower4u.com Search: http://mathispower4u.wordpress.com

From playlist Performing Operations with Complex Numbers

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

Canonical structures inside the Platonic solids III | Universal Hyperbolic Geometry 51

The dodecahedron is surely one of the truly great mathematical objects---revered by the ancient Greeks, Kepler, and many mathematicians since. Its symmetries are particularly rich, and in this video we look at how to see the five-fold and six-fold symmetries of this object via internal str

From playlist Universal Hyperbolic Geometry

Video thumbnail

Prealgebra 1.4g - Ordering Numbers

Ordering numbers, and visualizing this order on a number line. Some very simple but extremely important ideas. From the Prealgebra course by Derek Owens. This course is available online at http://www.LucidEducation.com.

From playlist Prealgebra Chapter 1 (Complete chapter)

Video thumbnail

How to construct a Tetrahedron

How the greeks constructed the first platonic solid: the regular tetrahedron. Source: Euclids Elements Book 13, Proposition 13. In geometry, a tetrahedron also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. Th

From playlist Platonic Solids

Video thumbnail

Bridges 2018 talk - Visualizing hyperbolic honeycombs

This is a talk I gave at the Bridges conference on mathematics and the arts (http://bridgesmathart.org/), on 27th July 2018, about my JMA paper with Roice Nelson: https://www.tandfonline.com/doi/abs/10.1080/17513472.2016.1263789 Many high resolution images at hyperbolichoneycombs.org Ray-m

From playlist Talks

Video thumbnail

The Mystery of the Fibonacci Cycle

A video about the mysterious pattern found in the final digits of Fibonacci numbers. It turns out, if you write out the full sequence of Fibonacci numbers, the pattern of final digits repeats every 60 numbers. What’s up with that? Watch this video and you’ll find out! (My apologies to any

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

The Honeycombs of 4-Dimensional Bees ft. Joe Hanson | Infinite Series

Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/donateinfi Be sure to check out It's OK to be Smart's video on nature's love of hexagons https://youtu.be/Pypd_yKGYpA And try CuriosityStream today: http://curiositystream.com/inf

From playlist Higher Dimensions

Video thumbnail

10. Exam Review

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Professor Gibson takes questions from students in order to review concepts that will be covered on the midterm exam. License: Crea

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Awesome Number Pattern 7

A fun number pattern built from the number 987654321

From playlist Number Patterns

Video thumbnail

7. Natural Honeycombs: Cork; Foams: Linear Elasticity

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session begins with a look at cork as a natural honeycomb structure, and covers properties of foams and some modeling. Licens

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Inverse problem by Abhinav Kumar

DISCUSSION MEETING SPHERE PACKING ORGANIZERS: Mahesh Kakde and E.K. Narayanan DATE: 31 October 2019 to 06 November 2019 VENUE: Madhava Lecture Hall, ICTS Bangalore Sphere packing is a centuries-old problem in geometry, with many connections to other branches of mathematics (number the

From playlist Sphere Packing - 2019

Video thumbnail

Vacancy-­induced local moments in frustrated magnets by Kedar Damle

DATES Monday 20 Jun, 2016 - Wednesday 29 Jun, 2016 VENUE Ramanujan Lecture Hall, ICTS Bangalore APPLY Understanding strongly interacting quantum many body systems is one of the major frontiers in present day physics. Condensed matter physics provides a wide panoply of systems where strong

From playlist School on Current Frontiers in Condensed Matter Research

Video thumbnail

Magic Hexagon - Numberphile

Dr James Grime talking Magic Hexagons (and magic squares). More links & stuff in full description below ↓↓↓ Support us on Patreon and get extra stuff: http://www.patreon.com/numberphile James Grime: http://singingbanana.com Support us on Patreon: http://www.patreon.com/numberphile NUMB

From playlist James Grime on Numberphile

Video thumbnail

Volume of rectangular prisms

A short video explaining why the formula for the volume of a rectangular prism is V=lwh. For more videos and applets visit http:www.MathVillage.info

From playlist Area, perimeter, surface area, volume

Video thumbnail

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Related pages

Order-7-3 triangular honeycomb