Order-n-3 3-honeycombs | Regular 3-honeycombs | Isochoric 3-honeycombs | Honeycombs (geometry) | Square tilings | Order-6-n 3-honeycombs | Isogonal 3-honeycombs

Order-6-3 square honeycomb

In the geometry of hyperbolic 3-space, the order-6-3 square honeycomb or 4,6,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a hexagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere. (Wikipedia).

Order-6-3 square honeycomb
Video thumbnail

Hyperbolic honeycombs

These sculptures are joint work with Roice Nelson. They are available from shapeways.com at http://shpws.me/oNgi, http://shpws.me/oqOx and http://shpws.me/orB8.

From playlist 3D printing

Video thumbnail

Ex 3: Multiply Complex Numbers

This video provides examples of how to multiply and square complex numbers. Library: http://mathispower4u.com Search: http://mathispower4u.wordpress.com

From playlist Performing Operations with Complex Numbers

Video thumbnail

Multiplying Complex Numbers in Polar(Trigonometric) Form [6cis(2pi/3)]*[5cis(-pi/6)]

Multiplying Complex Numbers in Polar(Trigonometric) Form [6cis(2pi/3)]*[5cis(-pi/6)] Please Subscribe here, thank you!!! https://goo.gl/JQ8Nys #mathsorcerer #trignonometry #onlinemathhelp

From playlist Complex Numbers

Video thumbnail

Reaching for Infinity Through Honeycombs – Roice Nelson

Pick any three integers larger than 2. We describe how to understand and draw a picture of a corresponding kaleidoscopic {p,q,r} honeycomb, up to and including {∞,∞,∞}.

From playlist G4G12 Videos

Video thumbnail

Volume of rectangular prisms

A short video explaining why the formula for the volume of a rectangular prism is V=lwh. For more videos and applets visit http:www.MathVillage.info

From playlist Area, perimeter, surface area, volume

Video thumbnail

5. Honeycombs: Out-of-plane Behavior

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Modeling mechanical behavior of honeycombs and out-of-plane properties are discussed. License: Creative Commons BY-NC-SA More info

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Multiplying Whole Numbers

This video explains how to multiply using whole numbers. http://mathispower4u.yolasite.com/

From playlist Multiplying and Dividing Whole Numbers

Video thumbnail

Counting: The Number of Types of Quadrilaterals from Two Rows of Points

This video explains how to determine the number of various types of quadrilaterals can be formed from two rows of points.

From playlist Counting (Discrete Math)

Video thumbnail

The Mystery of the Fibonacci Cycle

A video about the mysterious pattern found in the final digits of Fibonacci numbers. It turns out, if you write out the full sequence of Fibonacci numbers, the pattern of final digits repeats every 60 numbers. What’s up with that? Watch this video and you’ll find out! (My apologies to any

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

3. Structure of Cellular Solids

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson The structure of cellular materials, honeycombs and modeling honeycombs are explored in this session. License: Creative Commons BY

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Emergent SU(4) Symmetry in alpha-ZrCl3 by Masaki Oshikawa

Program The 2nd Asia Pacific Workshop on Quantum Magnetism ORGANIZERS: Subhro Bhattacharjee, Gang Chen, Zenji Hiroi, Ying-Jer Kao, SungBin Lee, Arnab Sen and Nic Shannon DATE: 29 November 2018 to 07 December 2018 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Frustrated quantum magne

From playlist The 2nd Asia Pacific Workshop on Quantum Magnetism

Video thumbnail

Canonical structures inside the Platonic solids III | Universal Hyperbolic Geometry 51

The dodecahedron is surely one of the truly great mathematical objects---revered by the ancient Greeks, Kepler, and many mathematicians since. Its symmetries are particularly rich, and in this video we look at how to see the five-fold and six-fold symmetries of this object via internal str

From playlist Universal Hyperbolic Geometry

Video thumbnail

Bridges 2018 talk - Visualizing hyperbolic honeycombs

This is a talk I gave at the Bridges conference on mathematics and the arts (http://bridgesmathart.org/), on 27th July 2018, about my JMA paper with Roice Nelson: https://www.tandfonline.com/doi/abs/10.1080/17513472.2016.1263789 Many high resolution images at hyperbolichoneycombs.org Ray-m

From playlist Talks

Video thumbnail

6. Natural Honeycombs: Wood

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson This session covers wood structure, micro-structure, stress-strain, honeycomb models, and bending. License: Creative Commons BY-NC

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

Determine a Line of Best Fit Using the Least-Squares Solution

This video explains how to determine a line of best fit using the method of least-squares solutions.

From playlist Least Squares Solutions

Video thumbnail

10. Exam Review

MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015 View the complete course: http://ocw.mit.edu/3-054S15 Instructor: Lorna Gibson Professor Gibson takes questions from students in order to review concepts that will be covered on the midterm exam. License: Crea

From playlist MIT 3.054 Cellular Solids: Structure, Properties and Applications, Spring 2015

Video thumbnail

How to construct a Tetrahedron

How the greeks constructed the first platonic solid: the regular tetrahedron. Source: Euclids Elements Book 13, Proposition 13. In geometry, a tetrahedron also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. Th

From playlist Platonic Solids

Video thumbnail

Inverse problem by Abhinav Kumar

DISCUSSION MEETING SPHERE PACKING ORGANIZERS: Mahesh Kakde and E.K. Narayanan DATE: 31 October 2019 to 06 November 2019 VENUE: Madhava Lecture Hall, ICTS Bangalore Sphere packing is a centuries-old problem in geometry, with many connections to other branches of mathematics (number the

From playlist Sphere Packing - 2019

Related pages

Hexagon | Poincaré disk model | Order-3 apeirogonal tiling | Hypercycle (geometry) | Coxeter–Dynkin diagram | Vertex figure | Pentagon | Schläfli symbol | Tessellation | Honeycomb (geometry) | Hyperbolic space | Square | Order-6 square tiling | Hexagonal tiling | Order-6 pentagonal tiling | Order-6 hexagonal tiling | Regular Polytopes (book) | Order-6 apeirogonal tiling | Geometry | Apeirogon | Apollonian gasket