Polytopes

Normal polytope

In mathematics, specifically in combinatorial commutative algebra, a convex lattice polytope P is called normal if it has the following property: given any positive integer n, every lattice point of the dilation nP, obtained from P by scaling its vertices by the factor n and taking the convex hull of the resulting points, can be written as the sum of exactly n lattice points in P. This property plays an important role in the theory of toric varieties, where it corresponds to projective normality of the toric variety determined by P. Normal polytopes have popularity in algebraic combinatorics. These polytopes also represent the homogeneous case of the Hilbert bases of finite positive rational cones and the connection to algebraic geometry is that they define projectively normal embeddings of toric varieties. (Wikipedia).

Video thumbnail

What is the difference between a regular and irregular polygon

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between a regular and irregular polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the definition of a regular polygon and how do you find the interior angles

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are four types of polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are convex polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are the names of different types of polygons based on the number of sides

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Sketch a net from a 3D figure

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Raman Sanyal: Polyhedral geometry of pivot rules

Geometrically, a linear program gives rise to a polyhedron together with an orientation of its graph. A simplex method selects a path from any given vertex to the sink and thus determines an arborescence. The centerpiece of any simplex method is the pivot rule that selects the outgoing edg

From playlist Workshop: Tropical geometry and the geometry of linear programming

Video thumbnail

What is a net

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Steffen Borgwardt: The role of partition polytopes in data analysis

The field of optimization, and polyhedral theory in particular, provides a powerful point of view on common tasks in data analysis. In this talk, we highlight the role of the so-called partition polytopes and their studies in clustering and classification. The geometric properties of parti

From playlist Workshop: Tropical geometry and the geometry of linear programming

Video thumbnail

Maria Angelica Cueto - "Implicitization of surfaces via geometric tropicalization"

Implicitization of surfaces via geometric tropicalization - Research lecture at the Worldwide Center of Mathematics.

From playlist Center of Math Research: the Worldwide Lecture Seminar Series

Video thumbnail

What is the difference between convex and concave

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Daniel Dadush: Probabilistic analysis of the simpler method and polytope diameter

In this talk, I will overview progress in our probabilistic understanding of the (shadow vertex) simplex method in three different settings: smoothed polytopes (whose data is randomly perturbed), well-conditioned polytopes (e.g., TU systems), and random polytopes with constraints drawn uni

From playlist Workshop: Tropical geometry and the geometry of linear programming

Video thumbnail

Nonlinear algebra, Lecture 7: "Toric Varieties", by Mateusz Michalek

This is the seventh lecture in the IMPRS Ringvorlesung, the advanced graduate course at the Max Planck Institute for Mathematics in the Sciences.

From playlist IMPRS Ringvorlesung - Introduction to Nonlinear Algebra

Video thumbnail

Connecting tropical intersection theory with polytope algebra in types A and B by Alex Fink

PROGRAM COMBINATORIAL ALGEBRAIC GEOMETRY: TROPICAL AND REAL (HYBRID) ORGANIZERS Arvind Ayyer (IISc, India), Madhusudan Manjunath (IITB, India) and Pranav Pandit (ICTS-TIFR, India) DATE & TIME: 27 June 2022 to 08 July 2022 VENUE: Madhava Lecture Hall and Online Algebraic geometry is t

From playlist Combinatorial Algebraic Geometry: Tropical and Real (HYBRID)

Video thumbnail

Guido Montúfar : Fisher information metric of the conditional probability politopes

Recording during the thematic meeting : "Geometrical and Topological Structures of Information" the September 01, 2017 at the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent

From playlist Geometry

Video thumbnail

Tropical Geometry - Lecture 12 - Geometric Tropicalization | Bernd Sturmfels

Twelve lectures on Tropical Geometry by Bernd Sturmfels (Max Planck Institute for Mathematics in the Sciences | Leipzig, Germany) We recommend supplementing these lectures by reading the book "Introduction to Tropical Geometry" (Maclagan, Sturmfels - 2015 - American Mathematical Society)

From playlist Twelve Lectures on Tropical Geometry by Bernd Sturmfels

Video thumbnail

Jonas Witt: Dantzig Wolfe Reformulations for the Stable Set Problem

Dantzig-Wolfe reformulation of an integer program convexifies a subset of the constraints, which yields an extended formulation with a potentially stronger linear programming (LP) relaxation than the original formulation. This paper is part of an endeavor to understand the strength of such

From playlist HIM Lectures: Trimester Program "Combinatorial Optimization"

Video thumbnail

Zakhar Kabluchko: Random Polytopes, Lecture III

In these three lectures we will provide an introduction to the subject of beta polytopes. These are random polytopes defined as convex hulls of i.i.d. samples from the beta density proportional to (1 − ∥x∥2)β on the d-dimensional unit ball. Similarly, beta’ polytopes are defined as convex

From playlist Workshop: High dimensional spatial random systems

Video thumbnail

Classifying a polygon in two different ways ex 4

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Related pages

Polytope | Abelian group | Convex hull | Gordan's lemma | Invariant (mathematics) | Convex cone | Ambient space | Hall's marriage theorem | Isomorphism | Hyperplane | Unimodular matrix | Simplex | Mathematics | Algebraic geometry | Euclidean space | Number theory | Ring theory | Combinatorial commutative algebra | Hilbert basis (linear programming) | Birkhoff polytope | Toric variety | Grothendieck group | Ehrhart polynomial | Monoid