Probabilistic inequalities | Statistical inequalities

Multidimensional Chebyshev's inequality

In probability theory, the multidimensional Chebyshev's inequality is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount. Let be an -dimensional random vector with expected value and covariance matrix If is a positive-definite matrix, for any real number : (Wikipedia).

Video thumbnail

Chebyshev's inequality

In this video, I state and prove Chebyshev's inequality, and its cousin Markov's inequality. Those inequalities tell us how big an integrable function can really be. Enjoy!

From playlist Real Analysis

Video thumbnail

Solving a multi step inequality with distributive property

👉 Learn how to solve multi-step linear inequalities having parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-step l

From playlist Solve and Graph Inequalities | Multi-Step With Parenthesis

Video thumbnail

Solving a multi step inequality with distributive property

👉 Learn how to solve multi-step linear inequalities having parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-step l

From playlist Solve and Graph Inequalities | Multi-Step With Parenthesis

Video thumbnail

Solving a multi step inequality

👉 Learn how to solve multi-step linear inequalities having parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-step l

From playlist Solve and Graph Inequalities | Multi-Step With Parenthesis

Video thumbnail

Solving and graphing a one variable inequality with variable on both sides

👉 Learn how to solve multi-step linear inequalities having no parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-ste

From playlist Solve and Graph Inequalities | Multi-Step Without Parenthesis

Video thumbnail

Probability: Chebyshev's Inequality Proof & Example

Today, we prove Chebyshev's inequality and give an example.

From playlist Probability

Video thumbnail

Solving a multi-step inequality with variables on both sides

👉 Learn how to solve multi-step linear inequalities having no parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-ste

From playlist Solve and Graph Inequalities | Multi-Step Without Parenthesis

Video thumbnail

Probabilty Bounds

MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 View the complete course: http://ocw.mit.edu/6-041SCF13 Instructor: Kuang Xu License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013

Video thumbnail

Learn how to solve a multi step inequality and graph the solution

👉 Learn how to solve multi-step linear inequalities having parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-step l

From playlist Solve and Graph Inequalities | Multi-Step With Parenthesis

Video thumbnail

CHEBYSHEV’S Theorem: An Inequality for Everyone (6-7)

Chebyshev’s Theorem (or Chebyshev’s Inequality) states that at least 1- (1/z2) of the items in any data set will be within z standard deviations of the mean, where z is any value greater than 1 and z need not be an integer. At least 75% of the data values must be within z = 2 standard dev

From playlist Depicting Distributions from Boxplots to z-Scores (WK 6 QBA 237)

Video thumbnail

L18.8 Related Topics

MIT RES.6-012 Introduction to Probability, Spring 2018 View the complete course: https://ocw.mit.edu/RES-6-012S18 Instructor: John Tsitsiklis License: Creative Commons BY-NC-SA More information at https://ocw.mit.edu/terms More courses at https://ocw.mit.edu

From playlist MIT RES.6-012 Introduction to Probability, Spring 2018

Video thumbnail

12/05/2019, Nicolas Brisebarre

Nicolas Brisebarre, École Normale Supérieure de Lyon Title: Correct rounding of transcendental functions: an approach via Euclidean lattices and approximation theory Abstract: On a computer, real numbers are usually represented by a finite set of numbers called floating-point numbers. Wh

From playlist Fall 2019 Symbolic-Numeric Computing Seminar

Video thumbnail

Solving and graphing a multi-step inequality

👉 Learn how to solve multi-step linear inequalities having parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-step l

From playlist Solve and Graph Inequalities | Multi-Step With Parenthesis

Video thumbnail

19. Weak Law of Large Numbers

MIT 6.041 Probabilistic Systems Analysis and Applied Probability, Fall 2010 View the complete course: http://ocw.mit.edu/6-041F10 Instructor: John Tsitsiklis License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013

Video thumbnail

Convergence in Probability and in the Mean Part 1

MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 View the complete course: http://ocw.mit.edu/6-041SCF13 Instructor: Kuang Xu License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013

Video thumbnail

CTNT 2020 - Sieves (by Brandon Alberts) - Lecture 3

The Connecticut Summer School in Number Theory (CTNT) is a summer school in number theory for advanced undergraduate and beginning graduate students, to be followed by a research conference. For more information and resources please visit: https://ctnt-summer.math.uconn.edu/

From playlist CTNT 2020 - Sieves (by Brandon Alberts)

Video thumbnail

Easy way to solve and graph an inequality with a variable on both sides

👉 Learn how to solve multi-step linear inequalities having no parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-ste

From playlist Solve and Graph Inequalities | Multi-Step Without Parenthesis

Video thumbnail

Weird notions of "distance" || Intro to Metric Spaces

Visit https://brilliant.org/TreforBazett/ to get started learning STEM for free, and the first 200 people will get 20% off their annual premium subscription. Check out my MATH MERCH line in collaboration with Beautiful Equations â–ºhttps://www.beautifulequation.com/pages/trefor Weird, fun

From playlist Cool Math Series

Video thumbnail

Solving and graphing an inequality

👉 Learn how to solve multi-step linear inequalities having parenthesis. An inequality is a statement in which one value is not equal to the other value. An inequality is linear when the highest exponent in its variable(s) is 1. (i.e. there is no exponent in its variable(s)). A multi-step l

From playlist Solve and Graph Inequalities | Multi-Step With Parenthesis

Related pages

Covariance matrix | Random variable | Hilbert space | Banach space | Expected value | Fréchet space | Pettis integral | Probability theory | Markov's inequality | Real number | Chebyshev's inequality