Exponential family distributions | Continuous distributions | Infinitely divisible probability distributions

Inverse Gaussian distribution

In probability theory, the inverse Gaussian distribution (also known as the Wald distribution) is a two-parameter family of continuous probability distributions with support on (0,∞). Its probability density function is given by for x > 0, where is the mean and is the shape parameter. The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level at a fixed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive drift takes to reach a fixed positive level. Its cumulant generating function (logarithm of the characteristic function) is the inverse of the cumulant generating function of a Gaussian random variable. To indicate that a random variable X is inverse Gaussian-distributed with mean μ and shape parameter λ we write . (Wikipedia).

Inverse Gaussian distribution
Video thumbnail

Ex 1: Find the Inverse of a Function

This video provides two examples of how to determine the inverse function of a one-to-one function. A graph is used to verify the inverse function was found correctly. Library: http://mathispower4u.com Search: http://mathispower4u.wordpress.com

From playlist Determining Inverse Functions

Video thumbnail

Ex 2: Find the Inverse of a Function

This video provides two examples of how to determine the inverse function of a one-to-one function. A graph is used to verify the inverse function was found correctly. Library: http://mathispower4u.com Search: http://mathispower4u.wordpress.com

From playlist Determining Inverse Functions

Video thumbnail

What are the Inverse Trigonometric functions and what do they mean?

👉 Learn how to evaluate inverse trigonometric functions. The inverse trigonometric functions are used to obtain theta, the angle which yielded the trigonometric function value. It is usually helpful to use the calculator to calculate the inverse trigonometric functions, especially for non-

From playlist Evaluate Inverse Trigonometric Functions

Video thumbnail

What is the definition of the inverse Tangent function

👉 Learn how to evaluate inverse trigonometric functions. The inverse trigonometric functions are used to obtain theta, the angle which yielded the trigonometric function value. It is usually helpful to use the calculator to calculate the inverse trigonometric functions, especially for non-

From playlist Evaluate Inverse Trigonometric Functions

Video thumbnail

Use the inverse of a function to determine the domain and range

👉 Learn how to find the inverse of a linear function. A linear function is a function whose highest exponent in the variable(s) is 1. The inverse of a function is a function that reverses the "effect" of the original function. One important property of the inverse of a function is that whe

From playlist Find the Inverse of a Function

Video thumbnail

What is the definition of the inverse cosine function

👉 Learn how to evaluate inverse trigonometric functions. The inverse trigonometric functions are used to obtain theta, the angle which yielded the trigonometric function value. It is usually helpful to use the calculator to calculate the inverse trigonometric functions, especially for non-

From playlist Evaluate Inverse Trigonometric Functions

Video thumbnail

Learn step by step how to find the inverse of an equation, then determine if a function or not

👉 Learn how to find the inverse of a linear function. A linear function is a function whose highest exponent in the variable(s) is 1. The inverse of a function is a function that reverses the "effect" of the original function. One important property of the inverse of a function is that whe

From playlist Find the Inverse of a Function

Video thumbnail

Finding the inverse of a function- Free Online Tutoring

👉 Learn how to find the inverse of a linear function. A linear function is a function whose highest exponent in the variable(s) is 1. The inverse of a function is a function that reverses the "effect" of the original function. One important property of the inverse of a function is that whe

From playlist Find the Inverse of a Function

Video thumbnail

Adaptive schemes for MCMC in infinite dimensions by Sreekar Vadlamani

PROGRAM: ADVANCES IN APPLIED PROBABILITY ORGANIZERS: Vivek Borkar, Sandeep Juneja, Kavita Ramanan, Devavrat Shah, and Piyush Srivastava DATE & TIME: 05 August 2019 to 17 August 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Applied probability has seen a revolutionary growth in resear

From playlist Advances in Applied Probability 2019

Video thumbnail

Math 030 Calculus I 031315: Inverse Functions and Differentiation

Inverse functions. Examples of determining the inverse. Relation between the graphs of a function and its inverse. One-to-one functions. Restricting the domain of a function so that it is invertible. Differentiability of inverse functions; relation between derivatives of function and

From playlist Course 2: Calculus I

Video thumbnail

Stanford CS229: Machine Learning | Summer 2019 | Lecture 9 - Bayesian Methods - Parametric & Non

For more information about Stanford’s Artificial Intelligence professional and graduate programs, visit: https://stanford.io/3ptRUmB Anand Avati Computer Science, PhD To follow along with the course schedule and syllabus, visit: http://cs229.stanford.edu/syllabus-summer2019.html

From playlist Stanford CS229: Machine Learning Course | Summer 2019 (Anand Avati)

Video thumbnail

15. Regression (cont.)

MIT 18.650 Statistics for Applications, Fall 2016 View the complete course: http://ocw.mit.edu/18-650F16 Instructor: Philippe Rigollet In this lecture, Prof. Rigollet talked about significance test and other tests. License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu

From playlist MIT 18.650 Statistics for Applications, Fall 2016

Video thumbnail

05c Data Analytics: Distribution Transform

A short discussion on the topic of distribution transforms, e.g. transforming your data to the parametric Gaussian distribution.

From playlist Data Analytics and Geostatistics

Video thumbnail

ML Tutorial: Probabilistic Numerical Methods (Jon Cockayne)

Machine Learning Tutorial at Imperial College London: Probabilistic Numerical Methods Jon Cockayne (University of Warwick) February 22, 2017

From playlist Machine Learning Tutorials

Video thumbnail

17: Principal Components Analysis_ - Intro to Neural Computation

MIT 9.40 Introduction to Neural Computation, Spring 2018 Instructor: Michale Fee View the complete course: https://ocw.mit.edu/9-40S18 YouTube Playlist: https://www.youtube.com/playlist?list=PLUl4u3cNGP61I4aI5T6OaFfRK2gihjiMm Covers eigenvalues and eigenvectors, Gaussian distributions, co

From playlist MIT 9.40 Introduction to Neural Computation, Spring 2018

Video thumbnail

Solving the Heat Equation with the Fourier Transform

This video describes how the Fourier Transform can be used to solve the heat equation. In fact, the Fourier transform is a change of coordinates into the eigenvector coordinates for the heat equation. Book Website: http://databookuw.com Book PDF: http://databookuw.com/databook.pdf Th

From playlist Data-Driven Science and Engineering

Video thumbnail

Stanford CS229: Machine Learning | Summer 2019 | Lecture 3 - Probability and Statistics

For more information about Stanford’s Artificial Intelligence professional and graduate programs, visit: https://stanford.io/3potDOW Anand Avati Computer Science, PhD To follow along with the course schedule and syllabus, visit: http://cs229.stanford.edu/syllabus-summer2019.html

From playlist Stanford CS229: Machine Learning Course | Summer 2019 (Anand Avati)

Video thumbnail

12. Testing Goodness of Fit (cont.)

MIT 18.650 Statistics for Applications, Fall 2016 View the complete course: http://ocw.mit.edu/18-650F16 Instructor: Philippe Rigollet In this lecture, Prof. Rigollet talked about Kolmogorov-Lilliefors test, Quantile-Quantile plots, and Kai-squared goodness-of-fit test. License: Creative

From playlist MIT 18.650 Statistics for Applications, Fall 2016

Video thumbnail

Find the domain and range of a function by using the inverse

👉 Learn how to find the inverse of a linear function. A linear function is a function whose highest exponent in the variable(s) is 1. The inverse of a function is a function that reverses the "effect" of the original function. One important property of the inverse of a function is that whe

From playlist Find the Inverse of a Function

Video thumbnail

Gabriele Steidl: Stochastic normalizing flows and the power of patches in inverse problems

CONFERENCE Recording during the thematic meeting : "Learning and Optimization in Luminy" the October 4, 2022 at the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent Find this video and other talks given by worldwide mathematicians on C

From playlist Probability and Statistics

Related pages

Exponential family | Wiener process | Support (mathematics) | Generalized inverse Gaussian distribution | Probability density function | Abraham Wald | Cumulative distribution function | Stochastic process | Survival function | Lévy distribution | Boundary value problem | Dirac delta function | Normal distribution | Exponential dispersion model | Random variable | Matplotlib | Probability theory | Hugo Hadwiger | Fundamental solution | Stopping time