Lie groups

Indefinite orthogonal group

In mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1. Unlike in the definite case, SO(p, q) is not connected – it has 2 components – and there are two additional finite index subgroups, namely the connected SO+(p, q) and O+(p, q), which has 2 components – see for definition and discussion. The signature of the form determines the group up to isomorphism; interchanging p with q amounts to replacing the metric by its negative, and so gives the same group. If either p or q equals zero, then the group is isomorphic to the ordinary orthogonal group O(n). We assume in what follows that both p and q are positive. The group O(p, q) is defined for vector spaces over the reals. For complex spaces, all groups O(p, q; C) are isomorphic to the usual orthogonal group O(p + q; C), since the transform changes the signature of a form. This should not be confused with the indefinite unitary group U(p, q) which preserves a sesquilinear form of signature (p, q). In even dimension n = 2p, O(p, p) is known as the . (Wikipedia).

Indefinite orthogonal group
Video thumbnail

Linear Algebra 7.1 Orthogonal Matrices

My notes are available at http://asherbroberts.com/ (so you can write along with me). Elementary Linear Algebra: Applications Version 12th Edition by Howard Anton, Chris Rorres, and Anton Kaul A. Roberts is supported in part by the grants NSF CAREER 1653602 and NSF DMS 2153803.

From playlist Linear Algebra

Video thumbnail

Orthogonal Projections

In this video, I define the concept of orthogonal projection of a vector on a line (and on more general subspaces), derive a very nice formula for it, and show why orthogonal projections are so useful. You might even see the hugging formula again. Enjoy! This is the second part of the ort

From playlist Orthogonality

Video thumbnail

11H Orthogonal Projection of a Vector

The orthogonal projection of one vector along another.

From playlist Linear Algebra

Video thumbnail

Abstract Algebra 1.5 : Examples of Groups

In this video, I introduce many important examples of groups. This includes the group of (rigid) motions, orthogonal group, special orthogonal group, the dihedral groups, and the "finite cyclic group" Z/nZ (or Z_n). Email : fematikaqna@gmail.com Code : https://github.com/Fematika/Animatio

From playlist Abstract Algebra

Video thumbnail

Orthogonal sets

This is the first video of a linear algebra-series on orthogonality. In this video, I define the notion of orthogonal sets, then show that an orthogonal set without the 0 vector is linearly independent, and finally I show that it's easy to calculate the coordinates of a vector in terms of

From playlist Orthogonality

Video thumbnail

Density of Eigenvalues in a Quasi-Hermitian Random Matrix Model by Joshua Feinberg

Non-Hermitian Physics - PHHQP XVIII DATE: 04 June 2018 to 13 June 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore Non-Hermitian Physics-"Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) XVIII" is the 18th meeting in the series that is being held over the years in Quantum Phys

From playlist Non-Hermitian Physics - PHHQP XVIII

Video thumbnail

Alessandra Sarti: Topics on K3 surfaces - Lecture 3: Basic properties of K3 surfaces

Abstract: Aim of the lecture is to give an introduction to K3 surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space. The name K3 was given by André Weil in 1958 in hono

From playlist Algebraic and Complex Geometry

Video thumbnail

Math 060 Fall 2017 111517C Orthonormal Bases, Orthogonal Matrices, and Method of Least Squares

Definition of orthogonal matrices. Example: rotation matrix. Properties: Q orthogonal if and only if its transpose is its inverse. Q orthogonal implies it is an isometry; that it is isogonal (preserves angles). Theorem: How to find, given a vector in an inner product space, the closest

From playlist Course 4: Linear Algebra (Fall 2017)

Video thumbnail

Find an Orthogonal Projection of a Vector Onto a Line Given an Orthogonal Basis (R2)

This video explains how t use the orthogonal projection formula given subset with an orthogonal basis. The distance from the vector to the line is also found.

From playlist Orthogonal and Orthonormal Sets of Vectors

Video thumbnail

Andy Wathen: Parallel preconditioning for time-dependent PDEs and PDE control

We present a novel approach to the solution of time-dependent PDEs via the so-called monolithic or all-at-once formulation. This approach will be explained for simple parabolic problems and its utility in the context of PDE constrained optimization problems will be elucidated. The underlyi

From playlist Numerical Analysis and Scientific Computing

Video thumbnail

Tathagata Basak: A monstrous(?) complex hyperbolic orbifold

I will report on progress with Daniel Allcock on the ”Monstrous Proposal”, namely the conjecture: Complex hyperbolic 13-space, modulo a particular discrete group, and with orbifold structure changed in a simple way, has fundamental group equal to (MxM)(semidirect)2, where M is the Monster

From playlist Topology

Video thumbnail

Linear Algebra 7.3 Quadratic Forms

My notes are available at http://asherbroberts.com/ (so you can write along with me). Elementary Linear Algebra: Applications Version 12th Edition by Howard Anton, Chris Rorres, and Anton Kaul A. Roberts is supported in part by the grants NSF CAREER 1653602 and NSF DMS 2153803.

From playlist Linear Algebra

Video thumbnail

Effective bounds for the least solutions of homogeneous quadratic... - Thomas Hille

Special Dynamics Seminar Topic: Effective bounds for the least solutions of homogeneous quadratic Diophantine inequalities Speaker: Thomas Hille Affiliation: Yale University Date: November 15, 2019 For more video please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

11J Orthogonal Projection of a Vector

The orthogonal projection of one vector along another.

From playlist Linear Algebra

Video thumbnail

Quadratic forms and homogeneous dynamics by Anish Ghosh

Probabilistic Methods in Negative Curvature ORGANIZERS: Riddhipratim Basu, Anish Ghosh and Mahan Mj DATE: 11 March 2019 to 22 March 2019 VENUE: Madhava Lecture Hall, ICTS, Bangalore The focal area of the program lies at the juncture of three areas: Probability theory of random wa

From playlist Probabilistic Methods in Negative Curvature - 2019

Video thumbnail

Orthogonal Set of Functions ( Fourier Series )

Thanks to all of you who support me on Patreon. You da real mvps! $1 per month helps!! :) https://www.patreon.com/patrickjmt !! Orthogonal Set of Functions ( Fourier Series ). Here I give the definition of an orthogonal set of functions and show a set of functions is an orthogonal set.

From playlist All Videos - Part 1

Video thumbnail

Degenerations of Kahler forms on K3 surfaces, and some dynamics - Simion Filip

Joint IAS/Princeton/Montreal/Paris/Tel-Aviv Symplectic Geometry Topic: Degenerations of Kahler forms on K3 surfaces, and some dynamics Speaker: Simion Filip Date: June 04, 2021 K3 surfaces have a rich geometry and admit interesting holomorphic automorphisms. As examples of Calabi-Yau ma

From playlist Mathematics

Video thumbnail

11I Orthogonal Projection of a Vector

The Orthogonal Projection of one vector along another.

From playlist Linear Algebra

Related pages

Poincaré group | Multiplicative group | Lie group | Split-complex number | Klein four-group | Vector space | Block matrix | Squeeze mapping | Lorentz group | Isomorphism | Dirac equation | Diagonal matrix | Group of Lie type | Determinant | Generalized flag variety | Identity component | Sesquilinear form | Symmetric bilinear form | Connected space | Mathematics | Real number | Lie algebra | Symmetric matrix | Nondegenerate form | Compact space | Fundamental group | Subgroup | Complex number | Orthogonal group | Transpose | Maximal compact subgroup | Matrix (mathematics) | Unit hyperbola | Inner automorphism | Volume form