Finite reflection groups

Hyperoctahedral group

In mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube. As a Coxeter group it is of type Bn = Cn, and as a Weyl group it is associated to the symplectic groups and with the orthogonal groups in odd dimensions. As a wreath product it is where Sn is the symmetric group of degree n. As a permutation group, the group is the signed symmetric group of permutations π either of the set or of the set such that for all i. As a matrix group, it can be described as the group of n × n orthogonal matrices whose entries are all integers. Equivalently, this is the set of n × n matrices with entries only 0, 1, or –1, which are invertible, and which have exactly one non-zero entry in each row or column. The representation theory of the hyperoctahedral group was described by according to . In three dimensions, the hyperoctahedral group is known as O × S2 where O ≅ S4 is the octahedral group, and S2 is a symmetric group (here a cyclic group) of order 2. Geometric figures in three dimensions with this symmetry group are said to have octahedral symmetry, named after the regular octahedron, or 3-orthoplex. In 4-dimensions it is called a hexadecachoric symmetry, after the regular 16-cell, or 4-orthoplex. In two dimensions, the hyperoctahedral group structure is the abstract dihedral group of order eight, describing the symmetry of a square, or 2-orthoplex. (Wikipedia).

Hyperoctahedral group
Video thumbnail

Groups acting acylindrically on hyperbolic spaces – Denis Osin – ICM2018

Geometry Invited Lecture 5.3 Groups acting acylindrically on hyperbolic spaces Denis Osin Abstract: The goal of this article is to survey some recent developments in the study of groups acting on hyperbolic spaces. We focus on the class of ‘acylindrically hyperbolic groups’; it is broad

From playlist Geometry

Video thumbnail

The circle and projective homogeneous coordinates (cont.) | Universal Hyperbolic Geometry 7b

Universal hyperbolic geometry is based on projective geometry. This video introduces this important subject, which these days is sadly absent from most undergrad/college curriculums. We adopt the 19th century view of a projective space as the space of one-dimensional subspaces of an affine

From playlist Universal Hyperbolic Geometry

Video thumbnail

Abstract Algebra | The dihedral group

We present the group of symmetries of a regular n-gon, that is the dihedral group D_n. http://www.michael-penn.net http://www.randolphcollege.edu/mathematics/

From playlist Abstract Algebra

Video thumbnail

Vic Reiner, Lecture II - 11 February 2015

Vic Reiner (University of Minnesota) - Lecture II http://www.crm.sns.it/course/4036/ Many results in the combinatorics and invariant theory of reflection groups have q-analogues for the finite general linear groups GLn(Fq). These lectures will discuss several examples, and open questions

From playlist Algebraic topology, geometric and combinatorial group theory - 2015

Video thumbnail

Raffaella Mulas - Spectral theory of hypergraphs

Hypergraphs are a generalization of graphs in which vertices are joined by edges of any size. In this talk, we generalize the graph normalized Laplace operators to the case of hypergraphs, and we discuss some properties of their spectra. We discuss the geometrical meaning of the largest an

From playlist Research Spotlight

Video thumbnail

John R. Parker: Complex hyperbolic lattices

Lattices in SU(2,1) can be viewed in several different ways: via their geometry as holomorphic complex hyperbolic isometries, as monodromy groups of hypergeometric functions, via algebraic geometry as ball quotients and (sometimes) using arithmeticity. In this talk I will describe these di

From playlist Geometry

Video thumbnail

What are Hyperbolas? | Ch 1, Hyperbolic Trigonometry

This is the first chapter in a series about hyperbolas from first principles, reimagining trigonometry using hyperbolas instead of circles. This first chapter defines hyperbolas and hyperbolic relationships and sets some foreshadowings for later chapters This is my completed submission t

From playlist Summer of Math Exposition 2 videos

Video thumbnail

Hypergroup definition and five key examples | Diffusion Symmetry 4 | N J Wildberger

We state a precise definition of a finite commutative hypergroup, and then give five important classes of examples, 1) the class hypergroup of a finite (non-commutative) group G 2) the character hypergroup of a finite (non-commutative) group G 3) the hypergroup associated to a distance-tr

From playlist Diffusion Symmetry: A bridge between mathematics and physics

Video thumbnail

Symmetric Groups (Abstract Algebra)

Symmetric groups are some of the most essential types of finite groups. A symmetric group is the group of permutations on a set. The group of permutations on a set of n-elements is denoted S_n. Symmetric groups capture the history of abstract algebra, provide a wide range of examples in

From playlist Abstract Algebra

Video thumbnail

Denis Osin: Acylindrically hyperbolic groups (part 3)

The lecture was held within the framework of Follow-up Workshop TP Rigidity. 1.5.2015

From playlist HIM Lectures 2015

Video thumbnail

Lie Groups and Lie Algebras: Lesson 39 - The Universal Covering Group

Lie Groups and Lie Algebras: Lesson 39 - The Universal Covering Group We are finally in position to understand the nature of the Universal Covering Group and its connection to all the Lie groups which share a single Lie algebra. This is a critical lecture! In this lecture we simply state

From playlist Lie Groups and Lie Algebras

Video thumbnail

Lie groups: Introduction

This lecture is part of an online graduate course on Lie groups. We give an introductory survey of Lie groups theory by describing some examples of Lie groups in low dimensions. Some recommended books: Lie algebras and Lie groups by Serre (anything by Serre is well worth reading) Repre

From playlist Lie groups

Video thumbnail

Why Are Prejudice and Conflict So Common? | Understanding the Mysteries of Human Behavior

It's no wonder discrimination seems to be everywhere: splitting people into two groups, even at random, makes them subconsciously dislike each other. A sense of competition can exaggerate these feelings. Pick up your tools; we've got some bridge building to do. Presented by Mark Leary Lea

From playlist Latest Uploads

Video thumbnail

Lie Groups and Lie Algebras: Lesson 38 - Preparation for the concept of a Universal Covering Group

Lie Groups and Lie Algebras: Lesson 38 - Preparation for the Universal Covering Group concept In this lesson we examine another amazing connection between the algebraic properties of the Lie groups with topological properties. We will lay the foundation to understand how discrete invaria

From playlist Lie Groups and Lie Algebras

Video thumbnail

Grothendieck Pairs and Profinite Rigidity - Martin Bridson

Arithmetic Groups Topic: Grothendieck Pairs and Profinite Rigidity Speaker: Martin Bridson Affiliation: Oxford University Date: January 26, 2022 If a monomorphism of abstract groups H↪G induces an isomorphism of profinite completions, then (G,H) is called a Grothendieck pair, recalling t

From playlist Mathematics

Video thumbnail

Regular permutation groups and Cayley graphs

Cheryl Praeger (University of Western Australia). Plenary Lecture from the 1st PRIMA Congress, 2009. Plenary Lecture 11. Abstract: Regular permutation groups are the 'smallest' transitive groups of permutations, and have been studied for more than a century. They occur, in particular, as

From playlist PRIMA2009

Video thumbnail

On the pioneering works of Professor I.B.S. Passi by Sugandha Maheshwari

PROGRAM GROUP ALGEBRAS, REPRESENTATIONS AND COMPUTATION ORGANIZERS: Gurmeet Kaur Bakshi, Manoj Kumar and Pooja Singla DATE: 14 October 2019 to 23 October 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Determining explicit algebraic structures of semisimple group algebras is a fund

From playlist Group Algebras, Representations And Computation

Video thumbnail

Vincent Guirardel: Natural subgroups of automorphisms

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebra

Video thumbnail

Gilbert Levitt - Vertex finiteness for relatively hyperbolic groups

Gilbert Levitt (University of Caen, France) Given a finitely generated group G, we consider all splittings of G over subgroups in a fixed family (such as finite groups, cyclic groups, abelian groups). We discuss whether it is the case that only finitely many vertex groups appear, up to is

From playlist T1-2014 : Random walks and asymptopic geometry of groups.

Video thumbnail

Hyperbola 3D Animation | Objective conic hyperbola | Digital Learning

Hyperbola 3D Animation In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other an

From playlist Maths Topics

Related pages

Snub 24-cell | 5-cube | 6-cube | Klein four-group | Schur multiplier | Projective orthogonal group | Tetrahedral symmetry | Hypercube | Group (mathematics) | Wreath product | 24-cell | 16-cell | Permutation group | Symmetric group | Determinant | 5-demicube | Point groups in four dimensions | Tetrahedron | Orbifold notation | Regular polytope | Tesseract | Rectangle | Examples of groups | Icosahedron | Symmetry group | Square | Mathematics | Octahedral symmetry | Cross-polytope | Coxeter group | Integer | Cube | Weyl group | Cyclic group | 6-demicube | 6-orthoplex | Octagon | Demihypercube | Double factorial | Orthogonal group | Symplectic group | 5-orthoplex | Coxeter notation | Octahedron | Stable homotopy theory | Invertible matrix