Autocorrelation | Fractals

Hurst exponent

The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases.Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time. The name "Hurst exponent", or "Hurst coefficient", derives from Harold Edwin Hurst (1880–1978), who was the lead researcher in these studies; the use of the standard notation H for the coefficient also relates to his name. In fractal geometry, the generalized Hurst exponent has been denoted by H or Hq in honor of both Harold Edwin Hurst and Ludwig Otto Hölder (1859–1937) by Benoît Mandelbrot (1924–2010). H is directly related to fractal dimension, D, and is a measure of a data series' "mild" or "wild" randomness. The Hurst exponent is referred to as the "index of dependence" or "index of long-range dependence". It quantifies the relative tendency of a time series either to regress strongly to the mean or to cluster in a direction. A value H in the range 0.5–1 indicates a time series with long-term positive autocorrelation, meaning both that a high value in the series will probably be followed by another high value and that the values a long time into the future will also tend to be high. A value in the range 0 – 0.5 indicates a time series with long-term switching between high and low values in adjacent pairs, meaning that a single high value will probably be followed by a low value and that the value after that will tend to be high, with this tendency to switch between high and low values lasting a long time into the future. A value of H=0.5 can indicate a completely uncorrelated series, but in fact it is the value applicable to series for which the autocorrelations at small time lags can be positive or negative but where the absolute values of the autocorrelations decay exponentially quickly to zero. This in contrast to the typically power law decay for the 0.5 < H < 1 and 0 < H < 0.5 cases. (Wikipedia).

Video thumbnail

What is the power of quotient property of exponents

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

What are the rules of exponents and the most common mistakes with the rules

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Scale-free dynamics via detrended fluctuation analysis (DFA)

This video lesson is part of a complete course on neuroscience time series analyses. The full course includes - over 47 hours of video instruction - lots and lots of MATLAB exercises and problem sets - access to a dedicated Q&A forum. You can find out more here: https://www.udemy.

From playlist NEW ANTS #3) Time-frequency analysis

Video thumbnail

Tipping in Thermoacoustic Systems and Their Early Warning Signals by R. I. Sujith

PROGRAM TIPPING POINTS IN COMPLEX SYSTEMS (HYBRID) ORGANIZERS: Partha Sharathi Dutta (IIT Ropar, India), Vishwesha Guttal (IISc, India), Mohit Kumar Jolly (IISc, India) and Sudipta Kumar Sinha (IIT Ropar, India) DATE: 19 September 2022 to 30 September 2022 VENUE: Ramanujan Lecture Hall an

From playlist TIPPING POINTS IN COMPLEX SYSTEMS (HYBRID, 2022)

Video thumbnail

The Large-Scale Dynamics of Flows: Facts and Proofs from 1D Burgers to 3D Euler/NS by Uriel Frisch

Program Turbulence: Problems at the Interface of Mathematics and Physics (ONLINE) ORGANIZERS: Uriel Frisch (Observatoire de la Côte d'Azur and CNRS, France), Konstantin Khanin (University of Toronto, Canada) and Rahul Pandit (Indian Institute of Science, Bengaluru) DATE: 07 December 202

From playlist Turbulence: Problems at The Interface of Mathematics and Physics (Online)

Video thumbnail

13 Machine Learning: Time Series Analysis

A lecture on working with time series data, including the topics of stationarity, autocorrelation, Hurst exponent, trends, seasonality and noise! Follow along with the demonstration workflow: https://github.com/GeostatsGuy/PythonNumericalDemos/blob/master/SubsurfaceDataAnalytics_TimeSerie

From playlist Machine Learning

Video thumbnail

What is the product of powers of exponents

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Introducing the Wolfram Problem Generator

Speaker: Greg Hurst This talk showcases Wolfram Problem Generator in a classroom setting and explains how it can be incorporated in STEM education. For more training resources, please visit: http://www.wolfram.com/Training/

From playlist Wolfram Technologies for STEM Education 2014

Video thumbnail

Learn how to apply the quotient rule of exponents with numbers

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

What is the Zero Power Property of Exponents

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

How Does the Rules of Exponents Allows to Multiply and Divide by Monomials

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Applying the rules of exponents to simplify an expression with numbers

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Time series analysis for Financial Data by A. S. Vasudeva Murthy

Program Summer Research Program on Dynamics of Complex Systems ORGANIZERS: Amit Apte, Soumitro Banerjee, Pranay Goel, Partha Guha, Neelima Gupte, Govindan Rangarajan and Somdatta Sinha DATE : 15 May 2019 to 12 July 2019 VENUE : Madhava hall for Summer School & Ramanujan hall f

From playlist Summer Research Program On Dynamics Of Complex Systems 2019

Video thumbnail

What is an exponent - Teacher explains all

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Quotient rule of exponents without talking

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

How to find a meaningful job, or find purpose in the job you already have | Aaron Hurst | Big Think

3 ways to find a meaningful job, or find purpose in the job you already have New videos DAILY: https://bigth.ink Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge -----------------------------------------------------------------------------

From playlist Job seekers playbook | Big Think

Video thumbnail

D. Yogeshwaran: The Poisson-OSSS inequality and an application to Confetti percolation

I will present a version of the OSSS inequality (proved by O’Donnell, Saks, Schramm and Servedio (2005)) to functionals of general Poisson point processes. This inequality can significantly simplify the proofs of sharp phase-transition in continuum percolation models. We shall illustrate t

From playlist Workshop: High dimensional spatial random systems

Video thumbnail

England v West Germany: 1966 World Cup Final | British Pathé

Team England plays on to victory against West Germany in this classic World Cup final from 1966 with many amazing moments including Geoff Hurst becoming the first man ever to score a hat-trick in a World Cup final. For Archive Licensing Enquiries Visit: https://goo.gl/W4hZBv Explore Our O

From playlist The World Cup Throughout History | British Pathé

Video thumbnail

What is the quotient of powers of exponents

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Football Back To The League (1966)

Upton Park Stadium, West London. LS. Bobby Moore leads Geoff Hurst and Martin Peters out onto West Ham's ground at start of first FA Cup football match between West Ham and Chelsea. LS. Crowd. GV. Zoom in, the three players in the middle of the pitch. LS. As they kick the ball about. SV

From playlist First Division Football | British Pathé

Related pages

Multifractal system | White noise | DNA | Algebraic structure | Mean | Pink noise | Bootstrapping (statistics) | Band gap | Martingale (probability theory) | Autocorrelation | Frequency domain | Stationary increments | Fractional Brownian motion | Range (statistics) | Detrended fluctuation analysis | Time domain | Power law | Standard deviation | Expected value | Rescaled range | Time series | Self-similarity | Fractal dimension