Uniform polyhedra

Great retrosnub icosidodecahedron

In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schläfli symbol sr{3⁄2,5⁄3}. (Wikipedia).

Video thumbnail

How to Construct an Icosahedron

How the greeks constructed the icosahedron. Source: Euclids Elements Book 13, Proposition 16. In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. https://www.etsy.com/lis

From playlist Platonic Solids

Video thumbnail

The remarkable Platonic solids I | Universal Hyperbolic Geometry 47 | NJ Wildberger

The Platonic solids have fascinated mankind for thousands of years. These regular solids embody some kind of fundamental symmetry and their analogues in the hyperbolic setting will open up a whole new domain of discourse. Here we give an introduction to these fascinating objects: the tetra

From playlist Universal Hyperbolic Geometry

Video thumbnail

Platonic and Archimedean solids

Platonic solids: http://shpws.me/qPNS Archimedean solids: http://shpws.me/qPNV

From playlist 3D printing

Video thumbnail

il Large Hadron Collider (Italiano)

Una panoramica sul progetto LHC ed i suoi campi di ricerca.

From playlist Italiano

Video thumbnail

Stella4D tips

A few of the settings I like to customise in Stella4D - a powerful polyhedra program. Stella4D website: http://www.software3d.com/Stella.php My website with lots of polyhedra resources: www.maths-pro.com

From playlist MASA

Video thumbnail

2020 Auction Fundraiser - Zoom Preview

2020 Auction Webpage: http://www.gathering4gardner.org/auction2020/ ** Auction Preview Timestamps: ** 00:20 – Bob Hearn – introduction and auction explanation 05:00 – G4G branded face mask give-away 05:45 – John Conway’s traveling backgammon game 06:00 – Autographed books 07:15 – Adam Rubi

From playlist Celebration of Mind

Video thumbnail

AWESOME SUPERCONDUCTOR LEVITATION!!!

A quantum levitator it's a circular track of magnets above which a razor-thin disc magically levitates, seeming to defy the laws of physics. The key to the levitator is the disc, which is made of superconducting material sandwiched between layers of gold and sapphire crystal. A piece of fo

From playlist THERMODYNAMICS

Video thumbnail

S.A.Robertson, How to see objects in four dimensions, LMS 1993

Based on the 1993 London Mathematical Society Popular Lectures, this special 'television lecture' is entitled "How to see objects in four dimensions" by Professor S.A.Robertson. The London Mathematical Society is one of the oldest mathematical societies, founded in 1865. Despite it's name

From playlist Mathematics

Video thumbnail

Canonical structures inside the Platonic solids III | Universal Hyperbolic Geometry 51

The dodecahedron is surely one of the truly great mathematical objects---revered by the ancient Greeks, Kepler, and many mathematicians since. Its symmetries are particularly rich, and in this video we look at how to see the five-fold and six-fold symmetries of this object via internal str

From playlist Universal Hyperbolic Geometry

Video thumbnail

LMS Popular Lecture Series 2008, Know your Enemy, Dr Reidun Twarock

LMS Popular Lecture Series 2008, Know your enemy - viruses under the mathematical microscope, Dr Reidun Twarock

From playlist LMS Popular Lectures 2007 - present

Video thumbnail

How to Construct a Dodecahedron

How the greeks constructed the Dodecahedron. Euclids Elements Book 13, Proposition 17. In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. A regular dode

From playlist Platonic Solids

Video thumbnail

The remarkable Platonic solids II: symmetry | Universal Hyperbolic Geometry 48 | NJ Wildberger

We look at the symmetries of the Platonic solids, starting here with rigid motions, which are essentially rotations about fixed axes. We use the normalization of angle whereby one full turn has the value one, and also connect the number of rigid motions with the number of directed edges.

From playlist Universal Hyperbolic Geometry

Video thumbnail

Alexander the Great: Crash Course World History #8

In which you are introduced to the life and accomplishments of Alexander the Great, his empire, his horse Bucephalus, the empires that came after him, and the idea of Greatness. Is greatness a question of accomplishment, of impact, or are people great because the rest of us decide they're

From playlist World History

Video thumbnail

Nostradamus' First 100 Predictions // 16th Century Primary Source

This is the first 'century' of 16th century seer Nostradamus' prophecies, unedited and without commentary. If this channel is something you like, if you think saving primary sources is important, head over to the patreon and join up! https://patreon.com/voicesofthepast — Don’t forget to

From playlist Curiosities

Video thumbnail

The World's Largest Domes

Domes top some of the world’s most well-known buildings. Here we countdown the largest domes that have ever been built. For more by The B1M subscribe now - http://ow.ly/GxW7y Read the full story on this video, including images and useful links, here: http://www.theb1m.com/video/the-world

From playlist The World's...

Related pages

List of uniform polyhedra | Snub dodecahedron | Schläfli symbol | Zero of a function | Sextic equation | Geometry | Chirality (mathematics) | Triangle | Great snub icosidodecahedron | Golden ratio | Great inverted snub icosidodecahedron | Pentagram