Spinors

Fermionic field

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors. Spin-1/2 Majorana fermions, such as the hypothetical neutralino, can be described as either a dependent 4-component Majorana spinor or a single 2-component Weyl spinor. It is not known whether the neutrino is a Majorana fermion or a Dirac fermion; observing neutrinoless double-beta decay experimentally would settle this question. (Wikipedia).

Video thumbnail

Animation of Fermilab's Accelerator Complex

The 6,800-acre Fermilab site is home to a chain of particle accelerators that provide particle beams to numerous experiments and R&D programs. This 2-minute animation explains how the proton source provides the particles that get accelerated and travel through the accelerator complex at cl

From playlist Detectors and Accelerators

Video thumbnail

Fermions and Bosons

In particle physics, there are many different types of particles, mostly ending with the phrase “-on.” In this video, Fermilab’s Dr. Don Lincoln talks about fermions and bosons and what is the key difference between these two particles.

From playlist Fermilab Featured Videos

Video thumbnail

Fermions in synthetic gauge fields and synthetic dimensions by Vijay Shenoy

New questions in quantum field theory from condensed matter theory URL: http://www.icts.res.in/discussion_meeting/qft2015/ Description:- The last couple of decades have seen a major revolution in the field of condensed matter physics, where the severe limitations of conventional paradigm

From playlist New questions in quantum field theory from condensed matter theory

Video thumbnail

Ferrofluid - static field 1

Patterns in a ferrofluid film confined between glass sheets, under water. Neodymium magnet moved by hand from below. See http://www.electricstuff.co.uk/ferro.html for more info

From playlist Projects & Installations

Video thumbnail

Electric Field (1 of 3) An Explanation

Explains how to determine the direction and magnitude of the electric field from charged particles. You can see a listing of all my videos at my website, http://www.stepbystepscience.com An electric field is an area that surrounds an electric charge, and exerts force on other charges in t

From playlist Electricity and Magnetism

Video thumbnail

Everything you need to know about Fermilab

Fermilab is one of the world’s finest laboratories dedicated to studying fundamental questions about nature. In this video, Fermilab’s own Dr. Don Lincoln talks about some of Fermilab’s leading research efforts that will lead the field for the next decade or two. If you want to learn more

From playlist LBNF/DUNE/PIP-II

Video thumbnail

Physics - E&M: Ch 36.1 The Electric Field Understood (1 of 17) What is an Electric Field?

Visit http://ilectureonline.com for more math and science lectures! In this video I will explain what is an electric field. An electric field exerts a force on a charged place in the field, can be detected by placing a charged in the field and observing the effect on the charge. The stren

From playlist THE "WHAT IS" PLAYLIST

Video thumbnail

Electric Field (2 of 3) Calculating the Magnitude and Direction of the Electric Field

Explains how to calculate the electric field of a charged particle and the acceleration of an electron in the electric field. You can see a listing of all my videos at my website, http://www.stepbystepscience.com An electric field is an area that surrounds an electric charge, and exerts f

From playlist Electricity and Magnetism

Video thumbnail

Quantum science and Fermilab

Joe Lykken, Fermilab's deputy director of research, discusses the future of quantum computing and science - including the role organizations like Fermilab will play. Learn more about the Fermilab Quantum Institute at https://quantum.fnal.gov/ For more information on Fermilab, visit https:

From playlist Quantum Physics

Video thumbnail

2020 Theory Winter School: Srinivas Raghu (pt2)

Topic: Boson-ferimon duality in strongly coupled field theories Part 2 For more information on the 2020 Theory Winter School: https://nationalmaglab.org/news-events/events/for-scientists/winter-theory-school

From playlist 2020 Theory Winter School

Video thumbnail

Unified Charge Vectors (UCV Theory) by Noam Why. Grand unification of electroweak and strong forces.

A new breakthrough in theoretical physics! UCV theory is a grand unification of electroweak and strong forces based on a new idea called Unified Charge Vectors. The theory was developed by Noam Why and was first published in January 2021. Original paper: https://independent.academia.edu/W

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

Topology and Strong Four-fermion Interactions by Simon Catterall

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

Chiral Lattice Theories from Staggered Fermions by Simon Catterall

PROGRAM Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography (ONLINE) ORGANIZERS: David Berenstein (UCSB), Simon Catterall (Syracuse University), Masanori Hanada (University of Surrey), Anosh Joseph (IISER, Mohali), Jun Nishimura (KEK Japan), David Sc

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography (Online)

Video thumbnail

The Sign Problem and Computational Complexity of Quantum by Shailesh Chandrasekharan

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

Studying thermal QCD matter on the lattice (LQCD1 - Lecture 2) by Peter Petreczky

PROGRAM THE MYRIAD COLORFUL WAYS OF UNDERSTANDING EXTREME QCD MATTER ORGANIZERS: Ayan Mukhopadhyay, Sayantan Sharma and Ravindran V DATE: 01 April 2019 to 17 April 2019 VENUE: Ramanujan Lecture Hall, ICTS Bangalore Strongly interacting phases of QCD matter at extreme temperature and

From playlist The Myriad Colorful Ways of Understanding Extreme QCD Matter 2019

Video thumbnail

Lattice Supersymmetry - I by Simon Catterall

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

Global chiral symmetry, extra dimensions, and topology (Lecture - 02) by David B Kaplan

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

Dynamics of 2+1-dimensional quantum field theories (Lecture - 04) by Nathan Seiberg

DATE & TIME 12 January 2018, 11:00 to 12:30 VENUE Ramanujan Lecture Hall, ICTS Bangalore RESOURCES Lecture 1: 8 January 2018, 16:00 to 17:30 Title: Symmetries, Duality, and the Unity of Physics Abstract: Global symmetries and gauge symmetries have played a crucial role in physics. The

From playlist Infosys-ICTS Chandrasekhar Lectures

Video thumbnail

The Mystery of Chiral Gauge Theories (Lecture - 03) by David B Kaplan

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

Fermi Inversion Factor Explained

https://www.patreon.com/edmundsj If you want to see more of these videos, or would like to say thanks for this one, the best way you can do that is by becoming a patron - see the link above :). And a huge thank you to all my existing patrons - you make these videos possible. In this video

From playlist Optoelectronic and Photonic Devices

Related pages

Second quantization | Neutrino | Causality | Dirac fermion | Double beta decay | Euler–Lagrange equation | Gradient | Majorana fermion | Spinor | Dirac equation | Pauli exclusion principle | Hamiltonian (quantum mechanics) | Electron | Spin (physics) | Gamma matrices | Proton | Unitary transformation | Fermion | Energy | Lorentz covariance | Neutralino | Spin–statistics theorem