Planar graphs

Convex drawing

In graph drawing, a convex drawing of a planar graph is a drawing that represents the vertices of the graph as points in the Euclidean plane and the edges as straight line segments, in such a way that all of the faces of the drawing (including the outer face) have a convex boundary. The boundary of a face may pass straight through one of the vertices of the graph without turning; a strictly convex drawing asks in addition that the face boundary turns at each vertex. That is, in a strictly convex drawing, each vertex of the graph is also a vertex of each convex polygon describing the shape of each incident face. Every polyhedral graph has a strictly convex drawing, for instance obtained as the Schlegel diagram of a convex polyhedron representing the graph. For these graphs, a convex (but not necessarily strictly convex) drawing can be found within a grid whose length on each side is linear in the number of vertices of the graph, in linear time. However, strictly convex drawings may require larger grids; for instance, for any polyhedron such as a pyramid in which one face has a linear number of vertices, a strictly convex drawing of its graph requires a grid of cubic area. A linear-time algorithm can find strictly convex drawings of polyhedral graphs in a grid whose length on each side is quadratic. Other graphs that are not polyhedral can also have convex drawings, or strictly convex drawings. Some graphs, such as the complete bipartite graph , have convex drawings but not strictly convex drawings. A combinatorial characterization for the graphs with convex drawings is known, and they can be recognized in linear time, but the grid dimensions needed for their drawings and an efficient algorithm for constructing small convex grid drawings of these graphs are not known in all cases. Convex drawings should be distinguished from convex embeddings, in which each vertex is required to lie within the convex hull of its neighboring vertices. Convex embeddings can exist in dimensions other than two, do not require their graph to be planar, and even for planar embeddings of planar graphs do not necessarily force the outer face to be convex. (Wikipedia).

Convex drawing
Video thumbnail

Geometry - Ch. 1: Basic Concepts (28 of 49) What are Convex and Concave Angles?

Visit http://ilectureonline.com for more math and science lectures! In this video I will explain how to identify convex and concave polygons. Convex polygon: When extending any line segment (side) it does NOT cut through any of the other sides. Concave polygon: When extending any line seg

From playlist THE "WHAT IS" PLAYLIST

Video thumbnail

What is the difference between convex and concave

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between convex and concave polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is a concave polygon

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Sketch a net from a 3D figure

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are convex polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Determine if a polygon is concave or convex ex 2

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Sketch a figure from a net

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

MA 15 Gerrymandering detection: Convex Hull ratio

This video is for my Spring 2020 section of MA 15, for the class meeting on Tuesday March 17. Visit the class website for the handouts! http://cstaecker.fairfield.edu/~cstaecker/courses/2020s015/ Fast forward music is from "Now Get Busy" by the Beastie Boys, licensed Creative Commons No

From playlist Math 15 Spring 2020

Video thumbnail

Math Explorations Ep18, Convex Hull Ratio (Mar 8, 2022)

This is a recording of a live class for Math 1015, Mathematics: An Exploration, an undergraduate course for non-technical majors at Fairfield University, Spring 2022. The major topics are voting, gerrymandering, and graph theory. Handouts and homework are at the class website. Class web

From playlist Math 1015 (Mathematical Explorations) Spring 2022

Video thumbnail

Lecture 2A: What is a "Mesh?" (Discrete Differential Geometry)

Full playlist: https://www.youtube.com/playlist?list=PL9_jI1bdZmz0hIrNCMQW1YmZysAiIYSSS For more information see http://geometry.cs.cmu.edu/ddg

From playlist Discrete Differential Geometry - CMU 15-458/858

Video thumbnail

Geometric Optics - A Level Physics

Continuing the A Level Physics revision series with geometric optics. The lens formula. Real and virtual images. Convex and Concave lenses and mirrors.

From playlist A Level Physics Revision

Video thumbnail

Class 17: D-Forms

MIT 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Fall 2012 View the complete course: http://ocw.mit.edu/6-849F12 Instructor: Erik Demaine This class introduces the pita form and Alexandrov-Pogorelov Theorem. D-forms are discussed with a construction exercise, followed

From playlist MIT 6.849 Geometric Folding Algorithms, Fall 2012

Video thumbnail

Linear Programming, Lecture 12. Convexity.

September 29, 2016. Penn State University.

From playlist Math484, Linear Programming, fall 2016

Video thumbnail

Tropical Geometry - Lecture 9 - Tropical Convexity | Bernd Sturmfels

Twelve lectures on Tropical Geometry by Bernd Sturmfels (Max Planck Institute for Mathematics in the Sciences | Leipzig, Germany) We recommend supplementing these lectures by reading the book "Introduction to Tropical Geometry" (Maclagan, Sturmfels - 2015 - American Mathematical Society)

From playlist Twelve Lectures on Tropical Geometry by Bernd Sturmfels

Video thumbnail

Ray Diagrams for Convex Mirrors

In this video from The Physics Classroom's video tutorial series, Mr. H demonstrates how to draw a ray diagram for objects located in front of convex mirrors. The characteristics of the image are described using the LOST Art of Image Description. You can find more information that suppor

From playlist Reflection and Mirrors

Video thumbnail

V3-31. Linear Programming. Convexity. Introduction.

Math 484: Linear Programming. Convexity. Introduction. Wen Shen, 2020, Penn State University

From playlist Math484 Linear Programming Short Videos, summer 2020

Video thumbnail

Lecture 4 | Convex Optimization I (Stanford)

Professor Stephen Boyd, of the Stanford University Electrical Engineering department, continues his lecture on convex functions in electrical engineering for the course, Convex Optimization I (EE 364A). Complete Playlist for the Course: http://www.youtube.com/view_play_list?p=3940DD956

From playlist Lecture Collection | Convex Optimization

Video thumbnail

What are the names of different types of polygons based on the number of sides

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Related pages

Complete bipartite graph | Schlegel diagram | Convex hull | Planar graph | Euclidean plane | Polyhedral graph | Convex embedding