Abelian varieties | Arithmetic geometry

Complex multiplication of abelian varieties

In mathematics, an abelian variety A defined over a field K is said to have CM-type if it has a large enough commutative subring in its endomorphism ring End(A). The terminology here is from complex multiplication theory, which was developed for elliptic curves in the nineteenth century. One of the major achievements in algebraic number theory and algebraic geometry of the twentieth century was to find the correct formulations of the corresponding theory for abelian varieties of dimension d > 1. The problem is at a deeper level of abstraction, because it is much harder to manipulate analytic functions of several complex variables. The formal definition is that the tensor product of End(A) with the rational number field Q, should contain a commutative subring of dimension 2d over Q. When d = 1 this can only be a quadratic field, and one recovers the cases where End(A) is an order in an imaginary quadratic field. For d > 1 there are comparable cases for CM-fields, the complex quadratic extensions of totally real fields. There are other cases that reflect that A may not be a simple abelian variety (it might be a cartesian product of elliptic curves, for example). Another name for abelian varieties of CM-type is abelian varieties with sufficiently many complex multiplications. It is known that if K is the complex numbers, then any such A has a field of definition which is in fact a number field. The possible types of endomorphism ring have been classified, as rings with involution (the Rosati involution), leading to a classification of CM-type abelian varieties. To construct such varieties in the same style as for elliptic curves, starting with a lattice Λ in Cd, one must take into account the Riemann relations of abelian variety theory. The CM-type is a description of the action of a (maximal) commutative subring L of EndQ(A) on the holomorphic tangent space of A at the identity element. Spectral theory of a simple kind applies, to show that L acts via a basis of eigenvectors; in other words L has an action that is via diagonal matrices on the holomorphic vector fields on A. In the simple case, where L is itself a number field rather than a product of some number of fields, the CM-type is then a list of complex embeddings of L. There are 2d of those, occurring in complex conjugate pairs; the CM-type is a choice of one out of each pair. It is known that all such possible CM-types can be realised. Basic results of Goro Shimura and Yutaka Taniyama compute the Hasse–Weil L-function of A, in terms of the CM-type and a Hecke L-function with Hecke character, having infinity-type derived from it. These generalise the results of Max Deuring for the elliptic curve case. (Wikipedia).

Video thumbnail

Francesc Fité, Sato-Tate groups of abelian varieties of dimension up to 3

VaNTAGe seminar on April 7, 2020 License: CC-BY-NC-SA Closed captions provided by Jun Bo Lau.

From playlist The Sato-Tate conjecture for abelian varieties

Video thumbnail

Stefano Marseglia, Computing isomorphism classes of abelian varieties over finite fields

VaNTAGe Seminar, February 1, 2022 License: CC-BY-NC-SA Links to some of the papers mentioned in this talk: Honda: https://doi.org/10.2969/jmsj/02010083 Tate: https://link.springer.com/article/10.1007/BF01404549 Deligne: https://eudml.org/doc/141987 Hofmann, Sircana: https://arxiv.org/ab

From playlist Curves and abelian varieties over finite fields

Video thumbnail

Lucia Mocz: A new Northcott property for Faltings height

Abstract: The Faltings height is a useful invariant for addressing questions in arithmetic geometry. In his celebrated proof of the Mordell and Shafarevich conjectures, Faltings shows the Faltings height satisfies a certain Northcott property, which allows him to deduce his finiteness stat

From playlist Algebraic and Complex Geometry

Video thumbnail

Finite or infinite? One key to algebraic cycles - Burt Totaro

Burt Totaro University of California, Los Angeles; Member, School of Mathematics February 2, 2015 Algebraic cycles are linear combinations of algebraic subvarieties of an algebraic variety. We want to know whether all algebraic subvarieties can be built from finitely many, in a suitable s

From playlist Mathematics

Video thumbnail

Taylor Dupuy (Nov. 13, 2020): Abelian Varieties Over Finite Fields in the LMFDB

I will talk about things around the LMFDB database of isogeny classes of abelian varieties over finite fields (and maybe even about isomorphism classes). These could include: --"Sato-Ain't" distributions, --weird Tate classes, --Bizzaro Hodge co-levels (and very strange Ax-Katz/Cheval

From playlist Seminar Talks

Video thumbnail

Tamás Hausel : Toric non-abelian Hodge theory

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Algebraic and Complex Geometry

Video thumbnail

Marc Levine - "The Motivic Fundamental Group"

Research lecture at the Worldwide Center of Mathematics.

From playlist Center of Math Research: the Worldwide Lecture Seminar Series

Related pages

Abelian variety | Dimension of an algebraic variety | Field of definition | Tangent space | Subring | Tensor product | Lattice (group) | Identity element | Rational number | Yutaka Taniyama | Complex multiplication | Rosati involution | Spectral theory | Mathematics | Field (mathematics) | Goro Shimura | Algebraic geometry | Algebraic number theory | Involution (mathematics) | Cartesian product | Endomorphism ring | Complex conjugate | Analytic function | Elliptic curve | Order (ring theory) | CM-field | Quadratic field | Max Deuring | Hecke character | Commutative ring