Set theory | Cardinal numbers

Cardinal assignment

In set theory, the concept of cardinality is significantly developable without recourse to actually defining cardinal numbers as objects in the theory itself (this is in fact a viewpoint taken by Frege; Frege cardinals are basically equivalence classes on the entire universe of sets, by equinumerosity). The concepts are developed by defining equinumerosity in terms of functions and the concepts of one-to-one and onto (injectivity and surjectivity); this gives us a quasi-ordering relation on the whole universe by size. It is not a true partial ordering because antisymmetry need not hold: if both and , it is true by the Cantor–Bernstein–Schroeder theorem that i.e. A and B are equinumerous, but they do not have to be literally equal (see isomorphism). That at least one of and holds turns out to be equivalent to the axiom of choice. Nevertheless, most of the interesting results on cardinality and its arithmetic can be expressed merely with =c. The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about this set is its size. These would be totally ordered by the relation , and =c would be true equality. As Y. N. Moschovakis says, however, this is mostly an exercise in mathematical elegance, and you don't gain much unless you are "allergic to subscripts." However, there are various valuable applications of "real" cardinal numbers in various models of set theory. In modern set theory, we usually use the Von Neumann cardinal assignment, which uses the theory of ordinal numbers and the full power of the axioms of choice and replacement. Cardinal assignments do need the full axiom of choice, if we want a decent cardinal arithmetic and an assignment for all sets. (Wikipedia).

Video thumbnail

BM9.1. Cardinality 1: Finite Sets

Basic Methods: We define cardinality as an equivalence relation on sets using one-one correspondences. In this talk, we consider finite sets and counting rules.

From playlist Math Major Basics

Video thumbnail

Introduction to the Cardinality of Sets and a Countability Proof

Introduction to Cardinality, Finite Sets, Infinite Sets, Countable Sets, and a Countability Proof - Definition of Cardinality. Two sets A, B have the same cardinality if there is a bijection between them. - Definition of finite and infinite sets. - Definition of a cardinal number. - Discu

From playlist Set Theory

Video thumbnail

Determine the Cardinality of Sets From a List of Set

This video explains how to determine the cardinality of sets given as lists. It includes union, intersection, and complement of sets. http://mathispower4u.com

From playlist Sets

Video thumbnail

What is the Cardinality of a Set? | Set Theory, Empty Set

What is the cardinality of a set? In this video we go over just that, defining cardinality with examples both easy and hard. To find the cardinality of a set, you need only to count the elements in the set. The cardinality of the empty set is 0, the cardinality of the set A = {0, 1, 2} is

From playlist Set Theory

Video thumbnail

Finding Cardinalities of Sets | Set Theory

Let's find the cardinality of some simple sets in set builder notation! Recall the cardinality of a set is simply the number of elements it contains. We'll write some sets that have been given in set builder notation and identify their cardinalities. We also briefly discuss the cardinality

From playlist Set Theory

Video thumbnail

BM9.2. Cardinality 2: Infinite Sets

Basic Methods: We continue the study of cardinality with infinite sets. First the class of countably infinite sets is considered, and basic results given. Then we give examples of uncountable sets using Cantor diagonalization arguments.

From playlist Math Major Basics

Video thumbnail

An Introduction to Sets (Set Theory)

What is a set in math? What are elements? What is cardinality? What are subsets? In this video we will answer all of those questions. We will pinpoint the definition of sets in math, talk about elements, explain what cardinality is, and what a subset is. I hope you find this video helpful,

From playlist Set Theory

Video thumbnail

Ex: Determine Cardinality of the Intersection of Two Sets Using a Venn Diagram

This video explains how to create a Venn Diagram to determine the number of elements in the intersection of sets. Site: http://mathispower4u.com

From playlist Sets

Video thumbnail

Cardinality of the Continuum

What is infinity? Can there be different sizes of infinity? Surprisingly, the answer is yes. In fact, there are many different ways to make bigger infinite sets. In this video, a few different sets of infinities will be explored, including their surprising differences and even more surpris

From playlist Summer of Math Exposition 2 videos

Video thumbnail

Introduction to Matching in Bipartite Graphs (Hall's Marriage Theorem)

This video introduces matching in bipartite graphs. mathispower4u.com

From playlist Graph Theory (Discrete Math)

Video thumbnail

Cardinality Example with [0,1]

Real Analysis: We show that the sets [0,1], (0,1], and (0,1) have the cardinality by constructing one-one correspondences. Then we expand the method to construct a one-one correspondence between [0,1] and the irrationals in [0,1].

From playlist Real Analysis

Video thumbnail

4.1.5 Sample Spaces: Video

MIT 6.042J Mathematics for Computer Science, Spring 2015 View the complete course: http://ocw.mit.edu/6-042JS15 Instructor: Albert R. Meyer License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 6.042J Mathematics for Computer Science, Spring 2015

Video thumbnail

Math Exposition Video 1:Introduction to the Probabilistic Method

This video is (hopefully) going to be part of a series of me tyring to explain mathematics close to my heart :-) This is also going to be my maiden entry into 3Blue1Brown's Summer of Math Exposition. I talk about a couple of intriguing examples,one on Ramsey numbers and the other on domina

From playlist Summer of Math Exposition Youtube Videos

Video thumbnail

Some Small Ideas in Math: A Set of Measure Zero Versus a Set of First Category (Meager Sets)

There are a ton of different ways to define what it means for a set to be "small". Here, we will focusing on the difference between a set of measure zero versus a set of first category by using examples to demonstrate that they are different sizing methods. Depending on the context of the

From playlist The New CHALKboard

Video thumbnail

Does Infinite Cardinal Arithmetic Resemble Number Theory? - Menachem Kojman

Menachem Kojman Ben-Gurion University of the Negev; Member, School of Mathematics February 28, 2011 I will survey the development of modern infinite cardinal arithmetic, focusing mainly on S. Shelah's algebraic pcf theory, which was developed in the 1990s to provide upper bounds in infinit

From playlist Mathematics

Video thumbnail

Kill the Mathematical Hydra | Infinite Series

Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/donateinfi How do you defeat a creature that grows two heads for every one head you chop off? You do the math. Thanks to The Great Courses Plus for sponsoring this episode of Infi

From playlist An Infinite Playlist

Video thumbnail

Shannons Theory (Contd...2)

Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur. For more details on NPTEL visit http://nptel.iitm.ac.in

From playlist Computer - Cryptography and Network Security

Video thumbnail

Determine the Cardinality of Sets: Set Notation, Intersection

This video explains how to determine the cardinality of a set given using set notation.

From playlist Sets (Discrete Math)

Related pages

Set theory | Gottlob Frege | Isomorphism | Model theory | New Foundations | Ordinal number | Injective function | Von Neumann cardinal assignment | Equivalence class | Preorder | Universe (mathematics) | Set (mathematics) | Surjective function | Bijection | Type theory | Principia Mathematica | Class (set theory) | Cardinality | Antisymmetric relation